Grid Batteries On Wheels: The Complicated Logistics Of Vehicle-Grid Integration

At its core, the concept of vehicle-grid integration (VGI) – also called Vehicle To Grid (V2G) – seems a simple one. Instead of a unidirectional charger for battery-electric vehicles (BEVs), a bidirectional charger would be used. This way, whenever the BEV is connected to such a charger, power could be withdrawn from the car’s battery for use on the local electrical grid whenever there’s demand.

Many of the complications with VGI have already been discussed, including the increased wear that this puts on a BEV’s battery, the need for an inherently mobile machine to be plugged into a charger, and the risk of needing one’s BEV and finding its battery to be nearly depleted. Here the cheerful marketing from Nissan and that from commercial initiatives such as Vehicle to Grid Britain makes it sound like it’s a no-brainer once those pesky details can be worked out.

In parallel with the world of glossy marketing leaflets, researchers have been investigating VGI as a potential option for grid-level energy storage. These studies produce a far less optimistic picture that puts the entire concept of VGI into question.

Continue reading “Grid Batteries On Wheels: The Complicated Logistics Of Vehicle-Grid Integration”

The 3D Printed Car Tire Rim Finally Hits The Road, Sorta

When you think of “car rim” you probably think stamped steel or machined alloy with a sturdy drum to withstand the arduous life of the road, not something 3D printed out of ABS. That would be crazy, right? Not to [Jón Schone] from Proper Printing, who’s recently released an update about his long-term quest to outfit his older sedan with extruded rims.

There were a few initial attempts that didn’t go as well as hoped. The main issue was layer separation as the air pressure would stretch the piece out, forming bubbles. He increased the thickness to the absolute maximum he could. A quick 3D scan of the brake caliper gave him a precise model to make sure he didn’t go too far. He also couldn’t make the rim any bigger to fit a bigger wheel to clear the caliper, as he was already maxing out his impressive 420 mm build volume from his modified Creality printer.

A helpful commenter had suggested using a threaded rod going all the way through the print as a sort of rebar. After initially discounting the idea as the thickness of the rim gets really thin to accommodate the caliper, [Jón] realized that he could bend the rods and attach the two halves that way. Armed with a paper diagram, he cut and bent the rods, inserting them into the new prints. It’s an impressive amount of filament, 2.7 kg of ABS just for one-half of the rim.

It didn’t explode while they inflated the tire and it didn’t explode while they did their best to abuse it in the small alley they had selected for testing. The car was technically no longer road legal, so we appreciate their caution in testing in other locations. In a triumphant but anti-climatic ending, the rim held up to all the abuse they threw at it.

We’ve been following this project for several months now, and are happy to see [Jón] finally bring this one across the finish line. It sounds like there’s still some testing to be done, but on the whole, we’d call the experiment a resounding success.

Continue reading “The 3D Printed Car Tire Rim Finally Hits The Road, Sorta”

Miniature Motorized RC Car Is Massively Impressive

Small is often subjective. For example, a school bus is small compared to an Airbus A380. But other things are just small all on their own and need no comparison to make the point. Such is the case with this micro RC car in the video below the break. It’s an RC model of the Smart Car, that when compared to other vehicles on the road, is quite diminutive, both subjectively and absolutely. But the outward appearance of [diorama111]’s project only tells half the story.

Starting out as a static display model, [diorama111] fully disassembled the 1/87 scale Smart Car and got to work. Fully proportional steering is attained with a very, very small stepper motor that drives custom knuckles attached to handmade suspension. They are works of art in their own right.

Do your projects need tweezers for assembly?

Drive is supplied by another small stepper motor. If [diorama111] had stopped there, it would have been every bit as noteworthy to see a 1/87 Smart Car doing figure eights around small bottles of model paint. Instead, [diorama111] kept going! The car has working turn signals, brake lights (including the 3rd taillight in the back window!) and headlights. There is even a function for hazard lights.

The electronics are all hand built using enameled wire and SMD components on perf board, and are a study in miniaturization all their own. An ATtiny processor seems right at home in this design. We admire [diorama111]s steady hands and patience to build such a small RC car, never mind one with such fine attention paid to all the details.

If downsized hacks like this float your thimble-sized boat, you might also appreciate this precious little PDP-11 and terminal.

Continue reading “Miniature Motorized RC Car Is Massively Impressive”

Closeup of the car dash with nixie tubes

Retro Future Nixie Corvair Instrument Panel

The future we know today looks very different than the one envisioned in the 60s and 70s. For starters, it has far too few Nixie tubes. An oversight [nixiebunny] wants to address with his Nixie tube instrument panel.

All the essential info is there: engine temperature, tachometer, speed, battery voltage, and even odometer. You might have noticed that there isn’t a clock. The justification that [nixiebunny] gives is that he’s always wearing his Nixie watch, so a clock in his car seems redundant. There is also a gap in the panel to allow an oil pressure display. Corvairs are known for throwing belts next to the oil sender, so any attached sensor needs to be designed well and thought through. A Teensy receives engine telemetry data (no OBDII port to hook into — GM didn’t come out with the first OBD port until the 80s) from the engine bay. The data is transformed into SPI data sent to the 74HC595 shift register chain via a CAT5 cable. Details are a little sparse, but we can see a custom PCB to fit the shape of the hole in the dash with the different Nixie tube footprints silkscreened on.

We love seeing Nixie tubes in unexpected places. Like this POV Nixie clock or this Nixie robot sculpture.

China Loves Battery Swapping EVs, But Will They Ever Make It Here?

Electric vehicles promise efficiency gains over their gas-fuelled predecessors, but the issue of recharging remains a hurdle for many eager to jump on board with the technology. The problem is only magnified for those that regularly street park their vehicles or live in apartments, without provision to charge a vehicle overnight at home.

Battery swapping promises to solve that issue, letting drivers of EVs change out their empty battery for a freshly charged one in a matter of minutes. The technology has been widely panned and failed to gain traction in the US.

However, as it turns out, battery swapping for EVs is actually thing in China, and it’s catching on at a rapid rate.

Continue reading “China Loves Battery Swapping EVs, But Will They Ever Make It Here?”

Swapped Dash Module Gives Ford Maverick An Upgrade

Ford is looking to make their new Maverick compact truck stand out, and so far, it seems to be working. Not only is it exceptionally cheap for a brand-new hybrid, truck or otherwise, but Ford actively encourages owners to modify their new ride. From standardized mounting points throughout the cabin intended for 3D printed upgrades, to an auxiliary 12 VDC line run to the bed specifically for powering user supplied hardware.

But we doubt even the most imaginative of Blue Oval engineers could have predicted that somebody would rip out the whole dash module and replace it with one from a higher-end Ford this early in the game. While many people can’t even find one of these trucks on the lot, [Tyvemattis] on the Maverick Truck Club forum has detailed his efforts to replace the relatively uninspired stock dash module of his truck with an all-digital version pulled from a 2020 Ford Escape Titanium.

Ford’s rendering of the original Maverick dash module.

Now we say “effort”, but as it turns out, the swap went off nearly without a hitch. The new digital module not only appears to be the identical size and shape as the original, but they both use the same connectors. Presumably this is because both vehicles are based on Ford’s scalable C2 platform, and likely means more components from this family of vehicles such as the Lincoln Corsair or new Bronco could be installed into the Maverick.

So what’s the downside? According to [Tyvemattis], the computer is throwing error messages as the Maverick doesn’t have a lot of the hardware that the dash is trying to communicate with. He also can’t change the vehicle’s driving mode, and the cruise control can only be enabled when the truck is stopped. But probably the most annoying issue is that the fuel gauge is off by 50%, so when the tank is full, it shows you’ve only got half a tank. At least one other user on the forum believes this could be alleviated by modifying the fuel sensor wiring, so it will be interesting to see how difficult a fix it ends up being.

We first ran across the DIY-friendly Maverick back in October of last year, and we’re encouraged to already see owners answering Ford’s challenge by tinkering with the vehicle. Here’s hoping this is the start of a new chapter in the long and storied history of car hacking.

Thanks to [Matt] for the tip.

Arduino Activated Automotive Aerodynamic Apparatus Is… (Spoiler Alert!)

Sometimes a great hack is great for no other reason than that it’s fun, and [Michael Rechtin]’s DIY Active Aero Spoiler and Air Brake certainly qualifies as a fun hack. This is a mod designed to live in a world where looks are everything, stickers add horsepower, and a good sound system is more important than good wheel alignment. Why is that? Because like the switch that exists only to activate the mechanism that turns it off, the DIY Active Aero Spoiler and Air Brake seen below is almost completely useless. So to understand its allure, we must understand its inspiration.

For a few decades now, luxury sports car manufacturers have been adding active aerodynamic components to their vehicles. For example, several Porsche models feature adaptive spoilers that adjust to driving conditions. Super cars such as the Bugatti Veyron have spoilers that flip up at high angles during braking to increase drag and reduce braking distance. All of these features are sadly missing from the average two or four door family-car-turned-wannabe-track-fiend. Until now!

[Michael] has created a new active spoiler for every mall-bound muffler-challenged hand me down. The build starts with a CNC cut foam wing which is covered with fiberglass, Bondo (an automotive necessity) and some faux carbon fiber for that go-fast feel. An Arduino, IMU, two servos, and a battery pack detect deceleration and automatically increase the spoiler angle just like the big boys, but without needing any integration into the vehicles systems. Or bolts, for that matter.

It’s unlikely that the braking force is enough to slow down the vehicle though, given that it’s not enough to pop the suction cups holding it to the trunk lid. But does it have the “wow” factor that it was designed to induce? Spoiler Alert: It does!

As it turns out, this isn’t the first adjustable spoiler featured here at Hackaday, and this adjustable spoiler on a car that’s made for actual racing is quite interesting.

Continue reading “Arduino Activated Automotive Aerodynamic Apparatus Is… (Spoiler Alert!)”