EV Charging Connectors Come In Many Shapes And Sizes

Electric vehicles are now commonplace on our roads, and charging infrastructure is being built out across the world to serve them. It’s the electric equivalent of the gas station, and soon enough, they’re going to be everywhere.

However, it raises an interesting problem. Gas pumps simply pour a liquid into a hole, and have been largely standardized for quite some time. That’s not quite the case in the world of EV chargers, so let’s dive in and check out the current state of play.

AC, DC, Fast, or Slow?

Since becoming more mainstream over the past decade or so, EV technology has undergone rapid development. With most EVs still somewhat limited in range, automakers have developed ever-faster charging vehicles over the years to improve practicality. This has come through improvements to batteries, controller hardware, and software. Charging tech has evolved to the point where the latest EVs can now add hundreds of miles of range in under 20 minutes.

However, charging EVs at this pace requires huge amounts of power. Thus, automakers and industry groups have worked to develop new charging standards that can deliver high current to top vehicle batteries off as quickly as possible.

As a guide, a typical home outlet in the US can deliver 1.8 kW of power. It would take an excruciating 48 hours or more to charge a modern EV from a home socket like this.

In contrast, modern EV charge ports can carry anywhere from 2 kW up to 350 kW in some cases, and require highly specialized connectors to do so. Various standards have come about over the years as automakers look to pump more electricity into a vehicle at greater speed. Let’s take a look at the most common options out in the wild today. Continue reading “EV Charging Connectors Come In Many Shapes And Sizes”

DIY Arduino Based EV Charger Saves Money, Looks Pro

Electric vehicles (EVs) are something of a hot topic, and most of the hacks we’ve featured regarding them center on conversions from Internal Combustion to Electric. These are all fine, and we hope to see plenty more of them in the future. There’s another aspect that doesn’t get covered as often: How to charge electric vehicles- especially commercially produced EV’s rather than the DIY kind. This is the kind of project that [fotherby] has taken on: A 7.2 kW EV charger for his Kia.

Faced with spending £900 (about $1100 USD) for a commercial unit installed by a qualified electrician, [fotherby] decided to do some research. The project wasn’t outside his scope, and he gave himself a head start by finding a commercial enclosure and cable that was originally just a showroom unit with no innards.

An Arduino Pro Mini provides the brains for the charger, and the source code and all the needed information to build your own like charger is on GitHub. What’s outstanding about the guide though is the deep dive into how these chargers work, and how straightforward they really are without being simplistic.

Dealing with mains power and the installation of such a serious piece of kit means that there are inherent risks for the DIYer, and [fotherby] addresses these admirably by including a ground fault detection circuit. The result is that if there is a ground fault of any kind, it will shut down the entire circuit at speeds and levels that are below the threshold that can harm humans. [fotherby] backs this up by testing the circuit thoroughly and documenting the results, showing that the charger meets commercial standards. Still, this isn’t a first-time project for the EV enthusiast, so we feel compelled to say “Don’t Try This At Home” even though that’s exactly what’s on display.

In the end, several hundred quid were saved, and the DIY charger does the job just as well as the commercial unit. A great hack indeed! And while these aren’t common, we did cover another Open Source EV charger about a year ago that you might like to check out as well.

Continue reading “DIY Arduino Based EV Charger Saves Money, Looks Pro”

The State Of Play In Solid State Batteries

Electric vehicles are slowly but surely snatching market share from their combustion-engined forbearers. However, range and charging speed remain major sticking points for customers, and are a prime selling point for any modern EV. Battery technology is front and center when it comes to improving these numbers.

Solid-state batteries could mark a step-change in performance in these areas, and the race to get them to market is starting to heat up. Let’s take a look at the current state of play.

Continue reading “The State Of Play In Solid State Batteries”

Car Hacker Hacks Lawn Care Carb Into Hot Rod Car

Internal combustion engines have often been described (quite correctly) as air pumps, and because of this nature, they tend to respond very well to more air. Why? Because more air means more fuel, and more fuel means more power- the very nature of hot rodding itself. [Thunderhead289] is an accomplished car hacker, and he’s decided to take things the opposite direction: Less air, less fuel… more mileage? As you can see in the video below the break, [Thunderhead289] has figured out how to mount a single barrel carburetor from a lawn mower to the four barrel intake of a Ford 302– a V8 engine that’s many times larger than the largest single cylinder lawnmower!

The hacks start not just with the concept, but with getting the carburetor installed. Rather than being a downdraft carburetor, the new unit is a side draft, with the float bowl below the carb’s venturi. To mount it, a 3d printed adapter was made, which was no small feat on its own. [Thunderhead289] had to get quite creative and even elevate the temperature of his workshop to over 100 degrees Fahrenheit (38 Celsius) to get the print finished properly. Even then, the 34 hour print damaged his Ender printer, but not before completing the part.

The hackery doesn’t stop there, because simply mounting the carburetor is only half the battle. Getting the engine to run properly with such a huge intake restriction is a new task all its own, with a deeper dive into fuel pressure management, proper distributor timing, and instrumenting the car to make sure it won’t self destruct due to a poor fuel mixture.

While [Thunderhead289] hasn’t been able to check the mileage of his vehicle yet, just getting it running smoothly is quite an accomplishment. If silly car hacks are your thing, check out [Robot Cantina]’s 212cc powered Insight and how they checked the output of their little engine. Thanks to [plainspicker] for the tip!

Continue reading “Car Hacker Hacks Lawn Care Carb Into Hot Rod Car”

SDR Listens In To Your Tires

[Ross] has a 2008 Toyota Tacoma. Like many late model cars, each tire contains a direct tire pressure monitoring sensor or TPMS that wirelessly sends data about the tire status to the car. However, unlike some cars, the system has exactly one notification to the driver: one of your tires is low. It doesn’t tell you which one. Sure, you can check each tire, but [Ross] had a different problem. One sensor was bad and he had no way to know which one it was. He didn’t have any equipment to test the sensor, but he did have an RTL-SDR dongle and some know-how to figure out how to listen in on the sensors.

The key was to use some software called RTL-433 that is made to pick up these kinds of signals. It is available for Linux, Windows, or Mac, and supports hundreds of wireless sensors ranging from X10 RF to KlikAanKlikUit wireless switches.

Continue reading “SDR Listens In To Your Tires”

RC Car Test Tether Takes Car Testing To New Lengths

It’s fascinating to see what happens when a creative hacker is given a set of constraints to work within. [rctestflight] found themselves in a very specific set of circumstances: Free RC cars from sponsors, and no real purpose for them. Instead of just taking them apart to see what made them tick (itself the past time of many a beginning hacker), [rctestflight] decided to let the RC cars disassemble themselves, destructively, on their way to 100,000 (scale) RC Car Miles, tallying up the distance (and the carnage) in the end as you see in the video below the break.

Can you spot the RC car under the mud?

Re-using a jig and test track (his backyard) from another test, [rctestflight] set up solar powered tether that could power any of the vehicles under test. The vehicles were modified as needed to drive along the circular track on a tether, and once stability was achieved, the cars were set on their own to either drive 100,000 scale miles or die trying.

Seeing as how [rctestflight] hales from the Pacific NorthWet of the United States near Seattle, the endurance test turned out to be not just a test of distance. Among the factors evaluated were how well each vehicle could withstand the mud, grime, and yes, even earthworms, that awaited them.

After each vehicle failed beyond the point of a quick fix, they were all torn down. Where each manufacturer cut corners could clearly be seen, and the weaknesses and strengths of each vehicle were pretty interesting. Plus, there’s a pretty great (awful) uh… rendition… of an iconic 80’s song. Twice. And of course the final conclusion: Exactly how many miles did each vehicle go before catastrophic failure? Check the video for results.

Regular readers will know that [rctestflight] is somewhat of a Hackaday regular, with plentiful great hacks such as this drone boat that sails the high seas of Lake Washington.

Continue reading “RC Car Test Tether Takes Car Testing To New Lengths”

3D Printing Concept Car (Parts)

When you want to fabricate something you either start with something and take away what you don’t want — subtractive manufacturing — or you start with nothing and add material, which is additive manufacturing that we usually call 3D printing. Popular Science recently took a look inside Vital Auto, the British lab that uses 3D printing for high-end concept cars from companies like Rolls-Royce, McLauren, Jaguar, and others. In the video below, [Anthony Barnicott], an engineer for Vital, says that the two technologies — additive and subtractive — work best when used together.

As you might expect, they are not using a $200 FDM printer. They have three Formlabs 3Ls that print with resin and five Formlab Fuse 1 selective laser sintering printers. While metal printers are still uncommon in hacker’s workshops, resin printers are now very affordable although your garage printer is probably a good bit smaller than the 3L’s 335x200x300 mm volume. For comparison, an LCD-based AnyCubic Photon X provides just 165x132x80 mm. Of course, you’re looking at about $11,000 for the dual-laser 3L versus about $240 for the Photon.

Vital started building the EP9 electric car concept for NIO, an electric car maker in China. You can imagine that modern manufacturing machines make it possible to create more sophisticated concept cars faster. How many times do you want to tweak a part that takes a machinist eight hours to produce? But if you can just let a machine run overnight and get the result in the morning, you are more likely to change and refine the part.

Vital Auto is an interesting look at how professional fabrication shops are using the same technologies we do, at least at the core. We’ve noted before how these same technologies are making homebrew projects look better than some commercial products not long ago. You can print big things if you break them up, of course. Or, break the bank and buy a really big printer.

Continue reading “3D Printing Concept Car (Parts)”