Recover Data From Damaged Chips

Not every computer is a performance gaming rig. Some of us need cheap laptops and tablets for simple Internet browsing or word processing, and we don’t need to shell out thousands of dollars just for that. With a cheaper price tag comes cheaper hardware, though, such as the eMMC standard which allows flash memory to be used in a more cost-advantageous way than SSDs. For a look at some the finer points of eMMC chips, we’ll turn to [Jason]’s latest project.

[Jason] had a few damaged eMMC storage chips and wanted to try to repair them. The most common failure mode for his chips is “cratering” which is a type of damage to the solder that holds them to their PCBs. With so many pins in such a small area, and with small pins themselves, often traditional soldering methods won’t work. The method that [Jason] found which works the best is using 0.15 mm thick glass strips to aid in the reflow process and get the solder to stick back to the chip again.

Doing work like this can get frustrating due to the small sizes involved and the amount of heat needed to get the solder to behave properly. For example, upgrading the memory chip in an iPhone took an expert solderer numerous tries with practice hardware to finally get enough courage to attempt this soldering on his own phone. With enough practice, the right tools, and a steady hand, though, these types of projects are definitely within reach.

Robert Hall and the Solid-State Laser

The debt we all owe must be paid someday, and for inventor Robert N. Hall, that debt came due in 2016 at the ripe age of 96. Robert Hall’s passing went all but unnoticed by everyone but his family and a few close colleagues at General Electric’s Schenectady, New York research lab, where Hall spent his remarkable career.

That someone who lives for 96% of a century would outlive most of the people he had ever known is not surprising, but what’s more surprising is that more notice of his life and legacy wasn’t taken. Without his efforts, so many of the tools of modern life that we take for granted would not have come to pass, or would have been delayed. His main contribution started with a simple but seemingly outrageous idea — making a solid-state laser. But he ended up making so many more contributions that it’s worth a look at what he accomplished over his long career.

Continue reading “Robert Hall and the Solid-State Laser”

The Flight That Made The Calculator And Changed The World

It was the fall of 1965 and Jack Kilby and Patrick Haggerty of Texas Instruments sat on a flight as Haggerty explained his idea for a calculator that could fit in the palm of a hand. This was a huge challenge since at that time calculators were the size of typewriters and plugged into wall sockets for their power. Kilby, who’d co-invented the integrated circuit just seven years earlier while at TI, lived to solve problems.

Fig. 2 from US 3,819,921 Miniature electronic calculator
Fig. 2 from US 3,819,921 Miniature electronic calculator

By the time they landed, Kilby had decided they should come up with a calculator that could fit in your pocket, cost less than $100, and could add, subtract, multiply, divide and maybe do square roots. He chose the code name, Project Cal Tech, for this endeavor, which seemed logical as TI had previously had a Project MIT.

Rather than study how existing calculators worked, they decided to start from scratch. The task was broken into five parts: the keyboard, the memory, the processor, the power supply, and some form of output. The processing portion came down to a four-chip design, one more than was initially hoped for. The output was also tricky for the time. CRTs were out of the question, neon lights required too high a voltage and LEDs were still not bright enough. In the end, they developed a thermal printer that burned images into heat-sensitive paper.

Just over twelve months later, with the parts all spread out on a table, it quietly spat out correct answers. A patent application was filed resulting in US patent 3,819,921, Miniature electronic calculator, which outlined the basic design for all the calculators to follow. This, idea borne of a discussion on an airplane, was a pivotal moment that changed the way we teach every student, and brought the power of solid-state computing technology into everyday life.

Continue reading “The Flight That Made The Calculator And Changed The World”

Solid State Tesla Coil Plays Music

If you’ve ever wanted to build a Tesla coil but found them to be prohibitively expensive and/or complicated, look no further! [Richard] has built a solid-state Tesla coil that has a minimum of parts and is relatively easy to build as well.

This Tesla coil is built around an air-core transformer that steps a low DC voltage up to a very high AC voltage. The core can be hand-wound or purchased as a unit. The drive circuit is where this Tesla coil built is set apart from the others. A Tesla coil generally makes use of a spark gap, but [Richard] is using the Power Pulse Modulator PWM-OCXi v2 which does the switching with transistors instead. The Tesla coil will function with one drive circuit but [Richard] notes that it is more stable with two.

The build doesn’t stop with the solid-state circuitry, though. [Richard] used an Arduino with software normally used to drive a speaker to get his Tesla coil to play music. Be sure to check out the video after the break. If you’re looking for a Tesla coil that is more Halloween-appropriate, you can take a look at this Tesla coil that shocks pumpkins!

Continue reading “Solid State Tesla Coil Plays Music”

32GB solid state Zune upgrade

Top_by_Top.preview (Custom)

[Andrew] wrote in to show us how he upgraded a broken Zune to solid state. He had one that was giving the Error code 5 when it booted. This means the hard drive is bad. He was able to find a compatible solid state 32Gb drive that, with a little bit of case modification, he made fit. Everything fit back into the Zune and looked completely stock. This was all done for less than $130. He seems pretty proud of getting a 32GB Zune for $150, and we don’t think that’s too big of a deal. We found a bunch of them on eBay for under $100. He even states that he doesn’t see any performance or battery life improvements. So why do we post this? Well, we like to see stuff split open and we actually like the idea of a no-moving-parts mp3 player. We’re hard on our electronics and the thought of that platter getting jarred over and over and over and over really bothers us. Great job [Andrew].

Solid state tesla coil

pano

While researching solid state Tesla coils we stumbled across this old project. As you have probably guessed from the pictures, this coil is meant to actually play music. Knowing how to add eye catching flare, the coiler uses a Plexiglas frame turned light pipe; only to be complimented by an audio amplifier complete with graphic equalizer. There is a video of the coil in action on YouTube. We have covered singing tesla coils in the past. Other twists on the classics include the tesla coil guitar amp and a hand held plasm gun.

24 Solid State Drives in Raid

In a time when marketing is all around us, companies often have to come up with new and creative ways to get us excited. Some go the viral route, others hire famous spokes people. Samsung did well with this idea. Let some computer geeks build something awesome and have fun with it. They chained 24 drives together to create a whopping 6Terrabyte array. They run various speed tests and even test the drive integrity by bouncing on a trampoline while dangling them from their chords. Yeah, they make the computer geeks a little geekier than they need to be, but who didn’t get excited to see those transfer speeds?