Old Phone Upcycled Into Pico Projector, ASMR

To update an old saying for the modern day, one man’s e-waste is another man’s bill of materials. Upcycling has always been in the hacker’s toolkit, and cellphones provide a wealth of resources for those bold enough to seize them. [Huy Vector] was bold enough, and transformed an old smartphone into a portable pico projector and an ASMR-style video. That’s what we call efficiency!

Kidding aside, the speech-free video embedded below absolutely gives enough info to copy along with [Huy Vector] even though he doesn’t say a word the whole time. You’ll need deft hands and a phone you really don’t care about, because one of the early steps is pulling the LCD apart to remove the back layers to shine an LED through. You’ll absolutely need an old phone for that, since that trick doesn’t apply to the OLED displays that most flagships have been rocking the past few years.

Continue reading “Old Phone Upcycled Into Pico Projector, ASMR”

phyphox

Smartphone Sensors Unlocked: Turn Your Phone Into A Physics Lab

These days, most of us have a smartphone. They are so commonplace that we rarely stop to consider how amazing they truly are. The open-source project Phyphox has provided easy access to your phone’s sensors for over a decade. We featured it years ago, and the Phyphox team continues to update this versatile application.

Phyphox is designed to use your phone as a sensor for physics experiments, offering a list of prebuilt experiments created by others that you can try yourself. But that’s not all—this app provides access to the many sensors built into your phone. Unlike many applications that access these sensors, Phyphox is open-source, with all its code available on its GitHub page.

The available sensors depend on your smartphone, but you can typically access readings from accelerometers, GPS, gyroscopes, magnetometers, barometers, microphones, cameras, and more. The app includes clever prebuilt experiments, like measuring an elevator’s speed using your phone’s barometer or determining a color’s HSV value with the camera. Beyond phone sensors, the Phyphox team has added support for Arduino BLE devices, enabling you to collect and graph telemetry from your Arduino projects in a centralized hub.

Thanks [Alfius] for sharing this versatile application that unlocks a myriad of uses for your phone’s sensors. You can use a phone for so many things. Really.

Continue reading “Smartphone Sensors Unlocked: Turn Your Phone Into A Physics Lab”

Knowing That It Is Possible

We like to think that we can do almost anything. Give me a broken piece of consumer electronics, and I’ll open it up and kick the capacitors. Give me an embedded Linux machine, and I’ll poke around for a serial port and see if it’s running uboot. But my confidence suddenly pales when you hand me a smartphone.

Now that’s not to say that I’ve never replaced a broken screen or a camera module with OEM parts. The modern smartphone is actually a miracle of modularity, with most sub-assemblies being swappable, at least in principle, and depending on your taste for applying heat to loosen up whatever glue holds the damn things together.

But actually doing hardware hacking on smartphones is still outside of my comfort zone, and that’s a shame. So I was pretty pleased to see [Marcin Plaza] attempt gutting a smartphone, repackaging it into a new form factor, and even adding a new keyboard to it. The best moment in that video for me comes around eight minutes in, when he has completely disassembled all of the modules and is laying them out on his desk to see how little he needs to make the thing work. And the answer is batteries, motherboard, USB-C, power button, and a screen. That starts to seem like a computer build, and that’s familiar turf.

That reminded me of [Scotty Allen]’s forays into cell-phone hackery that culminated in his building one completely from parts, and telling us all about it at Supercon ages ago. He told me that the turning point for him was realizing that if you have access to the tools to put it together and can get some of the impossibly small parts manufactured and/or assembled for you, that it’s just like putting a computer together.

So now I’ve seen two examples. [Scotty] put his together from parts, and [Marcin] actually got a new daughterboard made that interfaces with the USB to add a keyboard. Hardware hacking on a cellphone doesn’t sound entirely impossible. You’d probably want a cheap old used one, but the barrier to entry there isn’t that bad. You’ll probably have to buy some obscure connectors – they are tiny inside smartphones – and get some breakout boards made. But maybe it’s possible?

Anyone have more encouragement?

Phonenstien Flips Broken Samsung Into QWERTY Slider

The phone ecosystem these days is horribly boring compared to the innovation of a couple decades back. Your options include flat rectangles, and flat rectangles that fold in half and then break. [Marcin Plaza] wanted to think outside the slab, without reinventing the wheel. In an inspired bout of hacking, he flipped a broken Samsung zFlip 5 into a “new” phone.

There’s really nothing new in it; the guts all come from the donor phone. That screen? It’s the front screen that was on the top half of the zFlip, as you might have guessed from the cameras. Normally that screen is only used for notifications, but with the Samsung’s fancy folding OLED dead as Disco that needed to change. Luckily for [Marcin] Samsung has an app called Good Lock that already takes care of that. A little digging about in the menus is all it takes to get a launcher and apps on the small screen.

Because this is a modern phone, the whole thing is glued together, but that’s not important since [Marcin] is only keeping the screen and internals from the Samsung. The new case with its chunky four-bar linkage is a custom design fabbed out in CNC’d aluminum. (After a number of 3D Printed prototypes, of course. Rapid prototyping FTW!)

The bottom half of the slider contains a Blackberry Q10 keyboard, along with a battery and Magsafe connector. The Q10 keyboard is connected to a custom flex PCB with an Arduino Micro Pro that is moonlighting as a Human Input Device. Sure, that means the phone’s USB port is used by the keyboard, but this unit has wireless charging,so that’s not a great sacrifice. We particularly like the use of magnets to create a satisfying “snap” when the slider opens and closes.

Unfortunately, as much as we might love this concept, [Marcin] doesn’t feel the design is solid enough to share the files. While that’s disappointing, we can certainly relate to his desire to change it up in an era of endless flat rectangles.  This project is a lot more work than just turning a broken phone into a server, but it also seems like a lot more fun.

Continue reading “Phonenstien Flips Broken Samsung Into QWERTY Slider”

Smartphone Hackability, Or, A Pocket Computer That Isn’t

Smartphones boggle my mind a whole lot – they’re pocket computers, with heaps of power to spare, and yet they feel like the furthest from it. As far as personal computers go, smartphones are surprisingly user-hostile.

In the last year’s time, even my YouTube recommendations are full of people, mostly millennials, talking about technology these days being uninspiring. In many of those videos, people will talk about phones and the ecosystems that they create, and even if they mostly talk about the symptoms rather than root causes, the overall mood is pretty clear – tech got bland, even the kinds of pocket tech you’d consider marvellous in abstract. It goes deeper than cell phones all looking alike, though. They all behave alike, to our detriment.

A thought-provoking exercise is to try to compare smartphone development timelines to those of home PCs, and see just in which ways the timelines diverged, which forces acted upon which aspect of the tech at what points, and how that impacted the alienation people feel when interacting with either of these devices long-term. You’ll see some major trends – lack of standardization through proprietary technology calling the shots, stifling of innovation both knowingly and unknowingly, and finance-first development as opposed to long-term investments.

Let’s start with a fun aspect, and that is hackability. It’s not perceived to be a significant driver of change, but I do believe it to be severely decreasing chances of regular people tinkering with their phones to any amount of success. In other words, if you can’t hack it in small ways, you can’t really make it yours.

Continue reading “Smartphone Hackability, Or, A Pocket Computer That Isn’t”

The Death Of Industrial Design And The Era Of Dull Electronics

It’s often said that what’s inside matters more than one’s looks, but it’s hard to argue that a product’s looks and its physical user experience are what makes it instantly recognizable. When you think of something like a Walkman, an iPod music player, a desktop computer, a car or a TV, the first thing that comes to mind is the way  that it looks along with its user interface. This is the domain of industrial design, where circuit boards, mechanisms, displays and buttons are put into a shell that ultimately defines what users see and experience.

Thus industrial design is perhaps the most important aspect of product development as far as the user is concerned, right along with the feature list. It’s also no secret that marketing departments love to lean into the styling and ergonomics of a product. In light of this it is very disconcerting that the past years industrial design for consumer electronics in particular seems to have wilted and is now practically on the verge of death.

Devices like cellphones and TVs are now mostly flat plastic-and-glass rectangles with no distinguishing features. Laptops and PCs are identified either by being flat, small, having RGB lighting, or a combination of these. At the same time buttons and other physical user interface elements are vanishing along with prominent styling, leaving us in a world of basic geometric shapes and flat, evenly colored surfaces. Exactly how did we get to this point, and what does this mean for our own hardware projects?

Continue reading “The Death Of Industrial Design And The Era Of Dull Electronics”

The Make-roscope

Normal people binge-scroll social media. Hackaday writers tend to pore through online tech news and shopping sites incessantly. The problem with the shopping sites is that you wind up buying things, and then you have even more projects you don’t have time to do. That’s how I found the MAKE-roscope, an accessory aimed at kids that turns a cell phone into a microscope. While it was clearly trying to appeal to kids, I’ve had some kids’ microscopes that were actually useful, and for $20, I decided to see what it was about. If nothing else, the name made it appealing.

My goal was to see if it would be worth having for the kinds of things we do. Turns out, I should have read more closely. It isn’t really going to help you with your next PCB or to read that tiny print on an SMD part. But it is interesting, and — depending on your interests — you might enjoy having one. The material claims the scope can magnify from 125x to 400x.

What Is It?

The whole thing is in an unassuming Altoids-like tin. Inside the box are mostly accessories you may or may not need, like a lens cloth, a keychain, plastic pipettes, and the like. There are only three really interesting things: A strip of silicone with a glass ball in it, and a slide container with five glass slides, three of which have something already on them. There’s also a spare glass ball (the lens).

What I didn’t find in my box were cover slips, any way to prepare specimens, and — perhaps most importantly — clear instructions. There are some tiny instructions on the back of the tin and on the lens cloth paper. There is also a QR code, but to really get going, I had to watch a video (embedded below).

Continue reading “The Make-roscope”