ESP32-Powered Clock Brings Aviation Style To Your Desk

There’s something cool about the visual design language used in the aviation world. You probably don’t get much exposure to it if you’re not regularly flying a plane, but there are other ways you can bring it into your life. A great example would be building an aviation-themed clock, like this stylish timepiece from [oliverb.]

The electronic heart of the build is an ESP32. This wireless-capable microcontroller is a popular choice for clock builds these days. This is because it can contact network time servers out of the box, which allows you to build an incredibly capable and accurate clock without any additional parts. No real-time-clock needed—just have the ESP32 buzz the Internet for an accurate update on the regular!

As for the display itself, three gauges show hours, minutes, and seconds on aviation-like gauges. They’re 3D-printed, which means you can build them from scratch. That’s a touch easier than having to go out and source actual surplus aviation hardware. Each gauge is driven by a NEMA17 stepper motor. There’s also an ATMEGA328 on hand to drive a 7-segment gauge on the seconds display, and a PIR sensor which shuts the clock down when nobody is around to view it.

It’s a tidy build, and one with a compelling aesthetic at that. We’ve seen some similar builds before using real aviation gauges, too. Video after the break.

Continue reading “ESP32-Powered Clock Brings Aviation Style To Your Desk”

Atomic Clock Trades Receiver For An ESP8266

The advantage of a radio-controlled clock that receives the time signal from WWVB is that you never have to set it again. Whether it’s a little digital job on your desk, or some big analog wall clock that’s hard to access, they’ll all adjust themselves as necessary to keep perfect time. But what if the receiver conks out on you?

Well, you’d still have a clock. But you’d have to set it manually like some kind of Neanderthal. That wasn’t acceptable to [jim11662418], so after he yanked the misbehaving WWVB receiver from his clock, he decided to replace it with an ESP8266 that could connect to the Internet and get the current time via Network Time Protocol (NTP).

Continue reading “Atomic Clock Trades Receiver For An ESP8266”

Malfunctional Timekeeping With The Vetinari Clock

Lord Vetinari from the Discworld series is known for many things, but perhaps most of all a clock that doesn’t quite keep continuous time. Instead, it ticks away at random increments to infuriate those that perceive it, whilst keeping regular time over the long term. [iracigt] decided to whip up a real world version of this hilarious fictional timepiece.

The clock itself is an off-the-shelf timepiece purchased from Target for the princely sum of $5. However, it’s been deviously modified with an RP2040 microcontroller hidden away inside. The RP2040 is programmed to tick the clock at an average of once per second. But each tick itself is not so exact. Instead, there’s an erraticness to its beat – some ticks are longer, some shorter, in the classic Vetinari style. [iracigt] explains the nitty gritty of how it all works, from creating chaos with Markov chains to interfacing the RP2040 electronically with the cheap quartz clock movement.

If you’ve ever wanted to build one of these amusements yourself, [iracigt’s] writeup is a great place to start. Even better, it was inspired by an earlier post on these very pages! We love to see the community riff on a theme, and we’d love to see yours, too – so keep the tips coming, yeah? Video after the break.

Continue reading “Malfunctional Timekeeping With The Vetinari Clock”

Hybrid Mechanical Clock Shows It Both Ways

After seeing some of the interesting clock builds we’ve featured recently, [shiura] decided to throw their hat in the ring and sent us word about their incredible 3D printed hybrid clock that combines analog and digital styles.

While the multiple rotating rings might look complex from the front, the ingenious design behind the mechanism is powered by a single stepper motor. Its operation is well explained in the video below, but the short version is that each ring has a hook that pushes its neighboring ring over to the next digit once it has completed a full rotation. So the rightmost ring rotates freely through 0 to 9, then flips the 10-minute ring to the next number before starting its journey again. This does mean that the minute hand on the analog display makes a leap forward every 10 minutes rather than move smoothly, but we think its a reasonable compromise.

Beyond the 28BYJ-48 geared stepper motor and its driver board, the only other electronics in the build is a Seeed Studio XIAO ESP32C6 microcontroller. The WiFi-enabled MCU is able to pull the current time down from the Internet, but keep it mind it takes quite awhile for the mechanism to move all the wheels; you can see the process happen at 60x speed in the video.

If you’re looking to recreate this beauty, the trickiest part of this whole build might be the 3D print itself, as the design appears to make considerable use of multi-material printing. While it’s not impossible to build the clock with a traditional printer, you’ll have to accept losing some surface detail on the face and performing some well-timed filament swaps.

[shirua] tells us they were inspired to send their timepiece in after seeing the post about the sliding clock that just went out earlier in the week.

Continue reading “Hybrid Mechanical Clock Shows It Both Ways”

Building A Sliding Tile Clock

Hackers like making clocks, and we like reporting on them around these parts. Particularly if they’ve got a creative mechanism that we haven’t seen before. This fine timepiece from [gooikerjh] fits the bill precisely—it’s a sliding tile clock!

The brains of the build is an Arduino Nano ESP32. No, that’s not a typo. It’s basically an ESP32 in a Nano-like form factor. It relies on its in-built WiFi hardware to connect to the internet and synchronize itself with time servers so that it’s always showing accurate time. The ESP32 is set up to control a set of four stepper motors with a ULN2003 IC, and they run the neat time display mechanism.

All the custom parts are 3D printed, and the sliding tile concept is simple enough. There are four digits that show the time. Each digit contains number tiles that slide into place as the digit rotates. To increment the digit by one, it simply needs to be rotated 180 degrees by the relevant stepper motor, and the next number tile will slide into place.

We love a good clock at Hackaday—the more mechanical, the better. If you’re cooking up your own nifty and enigmatic clocks at home, don’t hesitate to drop us a line!

Clock Mechanism Goes Crazy For Arduino

You’ve doubtless seen those ubiquitous clock modules, especially when setting clocks for daylight savings time. You know the ones: a single AA battery, a wheel to set the time, and two or three hands to show the time. They are cheap and work well enough. But [Playful Technology] wanted to control the hands with an Arduino directly and, in the process, he shows us how these modules work.

If you’ve never studied the inside of these clock modules, you may be surprised about how they actually work. A crystal oscillator pulses a relatively large electromagnet. A small plastic gear has a magnetic ring and sits near the electromagnet.

Each time the polarity of the electromagnet flips, the ring turns 180 degrees to face the opposite magnetic pole to the electromagnet. This turns the attached gear which is meshed with other gears to divide the rotation rate down to once per 24 hours, once per hour, and once per minute. Pretty clever.

That makes it easy to control the hands. You simply detach the electromagnet from the rest of the circuit and control it yourself. The module he used had a mechanical limitation that prevents the hands from moving well at more than about 100 times normal speed.

We wondered how he made the hands reverse and, apparently, there is a way to get the drive gear to move in reverse, but it isn’t always reliable. Of course, you could also replace the drive mechanism with something like an RC servo or other motor and it sounds like he has done this and plans to show it off in another video.

We’ve seen the opposite trick before, too. If you really want an easy-to-control analog clock, try this one Continue reading “Clock Mechanism Goes Crazy For Arduino”

It’s Always Pizza O’Clock With This AI-Powered Timepiece

Right up front, we’ll say that [likeablob]’s pizza-faced clock gives us mixed feelings about our AI-powered future. On the one hand, if that’s Stable Diffusion’s idea of what a pizza looks like, then it should be pretty easy to slip the virtual chains these algorithms no doubt have in store for us. Then again, if they do manage to snare us and this ends up on the menu, we’ll pray for a mercifully quick end to the suffering.

The idea is pretty simple; the clock’s face is an empty pizza pan that fills with pretend pizza as the day builds to noon, whereupon pizza is removed until midnight when the whole thing starts again. The pizza images are generated by a two-stage algorithm using Stable Diffusion 1.5, and tend to favor suspiciously uncooked whole basil sprigs along with weird pepperoni slices and Dali-esque globs of cheese. Everything runs on a Raspberry Pi Zero W, with the results displayed on a 4″ diameter LCD with an HDMI adapter. Alternatively, you can just hit the web app and have a pizza clock on your desktop. If pizza isn’t your thing, fear not — other food and non-food images are possible, limited only by Stable Diffusion’s apparently quite limited imagination.

As clocks go, this one is pretty unique. But we’re used to seeing unusual clocks around here, from another food-centric timepiece to a clock that knits.