This Machine Has Lost Its Marbles

The astonishing variety of ways to tell the time which have appeared on these pages over the years provides a showcase of the talents and ingenuity of our community. Many clocks use designs we are familiar with, but every now and then along comes a clock that rings something new. So it is with [Ivan Miranda]’s latest work — a digital clock that shows the time with a dot matrix made of marbles. So far he’s published only part one of what will become a series. There’s technically no clock yet, but as it stands it’s enough of a marble machine to be a worthy project in its own right.

In the video below we see him solving the problems of creating free-running marble transport and handling via a conveyor belt, and solving such unexpected problems as cleanly releasing them from the belt, holding a row of marbles with a solenoid, and catching errant marbles that bounce free of the machine. The result is a rather pretty marble machine that makes an endless cascade of falling marbles on a curved track. We’re guessing that future videos will deal with the assembly of lines for the dot matrix display, such that the figures of the clock will be formed from black and white marbles, so this is a series to watch out for.

We’ve seen [Ivan]’s work in the past, not least for his giant 3D printer.

Continue reading “This Machine Has Lost Its Marbles”

A wooden digital clock with a metal knob on one end

Hackaday Prize 2023: Stretch Your Day With This 29-Hour Clock

Modern life can be stressful. Many of us struggle to balance work, family, exercise, and an ever-growing list of hacking projects, all of which claim our attention during the day. If you sometimes feel that those 24 hours just don’t cut it, you might be in luck: [HIGEDARUMA] has built a clock that can stretch your day by up to five hours.

Sadly, [HIGEDARUMA] hasn’t invented time travel (yet). What his clock does instead is slow down its own pace in the evening to push back the midnight hour. When it finally does reach 12:00 a.m., the clock’s pace is accelerated to ensure it’s back in sync with the rest of the world by six in the morning. It might seem silly, but there is a certain logic to it: [HIGEDARUMA] explains that evenings felt much longer when he was a child and that he would like to try and experience that again. Our sense of time may change over our lifetime, even if the actual passage of time doesn’t.

Timescales aside, the 29-hour clock is a neat piece of work from a hardware point of view. The case is made from 4 mm laser-cut MDF with wood-grain foil on the outside. Inside, there’s an ESP32 to run the show, along with an RTC module and three four-digit seven-segment LED displays. A chunky “volume” knob on the front lets you choose how much you’d like your day to be stretched.

We’ve seen clocks with non-linear dials before, as well as extremely linear ones, but this might be the first one with a non-constant pace. It makes us wonder what the passage of time feels like for those frozen in ice for 46,000 years.

Continue reading “Hackaday Prize 2023: Stretch Your Day With This 29-Hour Clock”

Time And Tide Are One Thing

The rise of 3D printing has given us incredible things, from awesome tchotchkes to intricate chocolates to useful things like spare body parts. But none has been so vital to comedy as say, printing hats for sea urchins. That’s right, sea urchins like to cover up with various things and will happily don, say, a 3D printed hat if presented the opportunity.

So anyway, this is a tide clock that uses a printed sea urchin and various hats to tell the time until/between low and high tide. How? It uses the position of a given hat relative to a couple nOOds LED strands, one for high tide and another for low.

Inside the large bamboo enclosure is an TTGO that fetches cheaply-obtained tide information and displays it on the screen. The TTGO also controls a servo that moves the sea urchin around. As it moves, a magnet in the urchin’s head (?) attracts the next hat.

Before settling on the current design, [rabbitcreek] experimented with both a sand dollar and a sea urchin skeleton. All the files are available if you want to whip up your own.

This isn’t [rabbitcreek]’s first foray into tide clocks. Here’s a solar number that should last for years.

Turning Soviet Electronics Into A Nixie Tube Clock

Sometimes you find something that looks really cool but doesn’t work, but that’s an opportunity to give it a new life. That was the case when [Davis DeWitt] got his hands on a weird Soviet-era box with four original Nixie tubes inside. He tears the unit down, shows off the engineering that went into it and explains what it took to give the unit a new life as a clock.

Each digit is housed inside a pluggable unit. If a digit failed, a technician could simply swap it out.

A lot can happen over decades of neglect. That was clear when [Davis] discovered every single bolt had seized in place and had to be carefully drilled out. But Nixie tubes don’t really go bad, so he was hopeful that the process would pay off.

The unit is a modular display of some kind, clearly meant to plug into a larger assembly. Inside the unit, each digit is housed in its own modular plug with a single Nixie tube at the front, a small neon bulb for a decimal point, and a bunch of internal electronics. Bringing up the rear is a card edge connector.

Continues after the break…

Continue reading “Turning Soviet Electronics Into A Nixie Tube Clock”

An Open Firmware For LILYGO’s E-ink Smart Watch

The world’s first quartz wristwatches were miles ahead of electric and mechanical wristwatches by most standards of the time, their accuracy was unprecedented and the batteries typically lasted somewhere on the order of a year. Modern smart watches, at least in terms of battery life, have taken a step backwards — depending on use, some can require daily charging.

If you’re looking to bridge the gap between a day and a year, you might look into a smart watch with an e-ink display. One option is the ESP32-based LILYGO T-Wrist. Of course, it’s not a smart watch without some software to run on it, which is where qpaperOS comes in.

Developed by [qewer33], this open source firmware for the T-Wrist is designed to get the most out of the battery by updating only once per minute. With a 250 mAh battery, it should last about five days on a charge. Of course, with the power of the ESP32 comes a whole host of other features including GPS, a step counter, and a weather display, although since the firmware is still under development, some of these features have yet to be implemented.

With all of the code available, qpaperOS could make an excellent platform from which to build your own smart watch around. Or perhaps you could chip in and add some of the features on the whislity. The ESP32 is a capable and versatile chip, even capable of playing popular 8-bit video games, although we’re not sure this functionality would fit in a smart watch and preserve battery life at the same time.

Turning A Quartz Clock Module Into A Time Reference

If you’re looking for a 1-second time reference, you’d probably just grab a GPS module off the shelf and use the 1PPS output. As demonstrated by [InazumaDenki], though, an old quartz clock module can also do the job with just a little work.

The module was harvested from an old Seiko wall clock, and features the familiar 32.768 KHz crystal you’d expect. This frequency readily divides down by 2 multiple times until you get a useful 1 Hz output. The module, originally designed to run a clock movement, can be repurposed with some basic analog electronics to output a useful time reference. [InazumaDenki] explains various ways this can be done, before demonstrating his favored method by building the device and demonstrating it with a decade counter.

It has some benefits over a GPS time reference, such as running at a much lower voltage and needing no external signal inputs. However, it’s also not going to be quite as accurate. Whether that matters to you or not depends on your specific application. Video after the break.

Continue reading “Turning A Quartz Clock Module Into A Time Reference”

These Fake Nixie Tubes Have A Bootup Screen

[IMSAI Guy] bought a fake Nixie clock, and luckily for all of us has filmed a very close look and demonstration. Using OLED displays as the fake Nixie elements might seem like cheating to some, the effect is really very well done.

Clock digits with bootup screens is something we didn’t know we liked until we saw it.

When it comes to Nixie elements, it’s hard to say which gets more attention and project time from hardware folks: original Nixie tube technology, or fake Nixie elements. Either way, their appeal is certainly undeniable.

Original Nixie tubes have shown up in modern remakes of alarm clocks, and modern semiconductors make satisfying a Nixie tube’s power requirements much easier with clever and compact Nixie drivers costing under $3 USD. This is also a good time to remind people that Nixie tubes don’t have to be digits. This audio spectrum visualizer, for example, uses IN-13 tubes which serve as elements of a bar graph.

Authentic Nixie elements require high voltages and are labor-intensive to manufacture to say the least, and as far as fake Nixie elements go, this one looks pretty good once it lights up. You can see it in action in the video, embedded below.

Continue reading “These Fake Nixie Tubes Have A Bootup Screen”