Conduit, Birdhouse, And Skateboard Become Giant Pen Plotter

If you think you need fancy parts to build a giant robot drawing machine, think again! [Cory Collins] shows you how he built his Big-Ass Wall Plotter v.2 out of stuff around the house or the hardware store, including electrical conduit, gang boxes, scrap wood, and skateboard bearings, alongside the necessary stepper motors, drivers, and timing belt. (You should consider having this trio of parts on hand as well, in our opinion.) With a span of 48″ (1.2 m) on a side, you probably don’t have paper that’s this big.

And while the construction is definitely rough-and-ready, there are a ton of details that turn this pile of parts into a beautifully working machine in short order. For instance, making the rails out of electrical conduit has a few advantages. Of course it’s cheap and strong, but the availability of off-the-shelf flanges makes assembly and disassembly easy. It also hangs neatly on the wall courtesy of some rubber cuphooks.

Note also the use of zip-tie belt tensioners: a simple and effective solution that we heartily endorse. [Corey] makes good use of custom 3D printed parts where they matter, like the compliant pen holder and linear mechanism for the z-axis, but most of the mechanical accuracy is courtesy of wooden shims and metal strapping.

[Corey] uses the machine to make patterns for his paper sculptures that are worth a look in their own right, and you can see the machine in action, sped up significantly, in the video below. This is the perfect project if you have a DIY eggbot that’s out of commission post-Easter: it reuses all the same parts, just on a vastly different scale. Heck, [Corey] even uses the same Inkscape Gcodetools extension as we did in that project. Now you know what we’re up to this weekend.

Can’t get enough pen plotters? Check out this one that lets you write whatever you want!

Continue reading “Conduit, Birdhouse, And Skateboard Become Giant Pen Plotter”

Bricking Your 3D Printer, In A Good Way

In our vernacular, bricking something is almost never good. It implies that something has gone very wrong indeed, and that your once-useful and likely expensive widget is now about as useful as a brick. Given their importance to civilization, that seems somewhat unfair to bricks, but it gets the point across.

It turns out, though, that bricks can play an important role in 3D-printing in terms of both noise control and print quality. As [Stefan] points out in the video below, living with a 3D printer whirring away on a long print can be disturbing, especially when the vibrations of the stepper motors are transmitted into and amplified by a solid surface, like a benchtop. He found that isolating the printer from the resonant surface was the key. While the stock felt pad feet on his Original Prusa i3 Mk 3S helped, the best results were achieved by building a platform of closed-cell packing foam and a concrete paver block. The combination of the springy foam and the dampening mass of the paver brought the sound level down almost 8 dBA.

[Stefan] also thoughtfully tested his setups on print quality. Machine tools generally perform better with more mass to damp unwanted vibration, so it stands to reason that perching a printer on top of a heavy concrete slab would improve performance. Even though the difference in quality wasn’t huge, it was noticeable, and coupled with the noise reduction, it makes the inclusion of a paver and some scraps of foam into your printing setup a no-brainer.

Not content to spend just a couple of bucks on a paver for vibration damping? Then cast a composite epoxy base for your machine — either with aluminum or with granite.

Continue reading “Bricking Your 3D Printer, In A Good Way”

CNC Plasma Cutter Filter Gets The Slag Out

No matter what kind of tools and materials you use in your shop, chances are pretty good that some process is going to release something that you don’t want to breathe. Table saw? Better deal with that wood dust. 3D-printer? We’ve discussed fume control ad nauseam. Soldering? It’s best not to inhale those flux fumes. But perhaps nowhere is fume extraction more important than in the metal shop, where vaporized bits of metal can wreak respiratory havoc.

Reducing such risks was [Shane Wighton]’s rationale behind this no-clean plasma cutter filter. Rather than a water table to collect cutting dross, his CNC plasma cutter is fitted with a downdraft table to suck it away. The vivid display of sparks shooting out of the downdraft fans belied its ineffectiveness, though. [Shane]’s idea is based on the cyclonic principle common to woodshop dust collectors and stupidly expensive vacuum cleaners alike. Plastic pipe sections, split in half lengthwise and covered in aluminum tape to make them less likely to catch on fire from the hot sparks, are set vertically in the air path. The pipes are arranged in a series of nested “S” shapes, offering a tortuous path to the spark-laden air as it exits the downdraft.

The video below shows that most of the entrained solids slow down and drop to the bottom of the filter; some still pass through, but testing with adhesive sheets shows the metal particles in the exhaust are much reduced. We like the design, especially the fact that there’s nothing to clog or greatly restrict the airflow.

Looking for more on CNC plasma cutter builds? We’ve got you covered, from just the basics to next-level.

Continue reading “CNC Plasma Cutter Filter Gets The Slag Out”

Is It A Toy? A Prototype? It’s A Hack!

Some of the coolest hacks do a lot with a little. I was just re-watching a video from [Homo Faciens], who after building a surprisingly capable CNC machine out of junk-bin parts and a ton of ingenuity, was accidentally challenged by Hackaday’s own [Dan Maloney] to take it a step further. [Dan] was only joking when he asked “Can anyone build a CNC machine out of cardboard and paperclips?”, but then [Homo Faciens] replied: cardboard and paperclip CNC plotter. Bam!

My favorite part of the cardboard project is not just the clever “encoder wheel” made of a bolt dipped in epoxy, with enough scraped off that it contacts a paperclip once per rotation. Nor was it the fairly sophisticated adjustable slides and ways that he built to mimic the functionality of the real deal. Nope.

My favorite part of this project is [Norbert] explaining that the machine has backlash here, and it’s got play there, due to frame flex. It is a positive feature of the machine. The same flaws that a full-metal machine would have are all present here, but due to the cheesy construction materials, you can see them with the naked eye instead of requiring a dial indicator. Because it wiggles visible tenths of an inch where a professional mill would wiggle invisible thousandths, that helps you build up intuition for the system.

This device isn’t a “prototype” because there’s no way [Norbert] intends it for serious use. But it surely isn’t just a “toy” either. “Instructional model” makes it sound like a teaching aid, created by a know-it-all master, intended to be consumed by students. If anything, there’s a real sense of exploration, improvisation, and straight-up hacking in this project. I’m sure [Norbert] learned as much from the challenge as we did from watching him tackle it. And it also captures the essence of hacking: doing something unexpected with tech.

Surprise us!

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter.

Want this type of article to hit your inbox every Friday morning? You should sign up!

Printable, Castable Feeders Simplify Pick-and-Place Component Management

It goes without saying that we love to see all the clever ways people have come up with to populate their printed circuit boards, especially the automated solutions. The idea of manually picking and placing nearly-microscopic components is reason enough to add a pick and place to the shop, but that usually leaves the problem of feeding components to the imagination of the user. And this mass-production-ready passive component feeder is a great example of that kind of imagination.

Almost every design we’ve seen for homebrew PnP component feeders have one of two things in common: they’re 3D-printed, or they’re somewhat complex. Not that those are bad things, but they do raise issues. Printing enough feeders for even a moderately large project would take forever, and the more motors and sensors a feeder has, the greater the chance of a breakdown. [dining-philosopher] solved both these problems with a simple design using only two parts, which can be resin cast. A lever arm is depressed by a plunger that’s attached to the LitePlacer tool, offset just enough so that the suction cup is lined up with the component location on the tape. A pawl in the lower arm moves forward when the tool leaves after picking up the part, engaging with the tape sprocket holes and advancing to the next component.

[dining-philosopher] didn’t attack the cover film peeling problem in his version, choosing to peel it off manually and use a weight to keep it taut and expose the next component. But in a nice example of collaboration, [Jed Smith] added an automatic film peeler to the original design. It complicates things a bit, but the peeler is powered by the advancing tape, so it’s probably worth it.

Continue reading “Printable, Castable Feeders Simplify Pick-and-Place Component Management”

OpenScan 3D Scans All Of The (Small) Things

The OpenScan project has been updated quite a bit since its inception. OpenScan is an open source, Arduino or Raspberry Pi-based 3D scanner for small objects that uses 3D printed hardware and some common electronic components to create 3D scans using photogrammetry; a process by which a series of still images from different angles are used to create a 3D point cloud of an object, which can then be used to generate a 3D model.

Feature visualization overlays detected features onto the camera preview to help judge quality. Broadly speaking, green is good.

Photogrammetry is a somewhat involved process that relies on consistent conditions, so going through the whole process only to find out the results aren’t up to snuff can be tiresome. Happily, OpenScan offers some interesting new functions such as feature visualization via the web interface, which helps a user judge scan quality and make changes to optimize results without having to blindly cross their fingers quite so much. OpenScan remains a one-person project by [Thomas], who is clearly motivated to improve his design and we’re delighted to see it getting updates.

Embedded below is a video that walks through the installation and web interface. It’s a fairly long and comprehensive, but if you like you can skip directly to [Thomas] demonstrating the interface around the 8:22 mark, or watch it below. Interested in your own unit? [Thomas] has an e-shop for parts and the GitHub repository is right here; the project also has its own subreddit.

Continue reading “OpenScan 3D Scans All Of The (Small) Things”

Plasma Cutter + Sharpie Is Surprisingly Useful

What we want is a Star Trek-style replicator. What we have are a bunch of different machines that can spew out various 2D and 3D shapes. For the foreseeable future, you’ll still need to post-process most of what you build in some way. [Stuff Made Here] had a challenge. He often uses his plasma cutter to create complex sheet metal items. But the cutter is two dimensional so the piece doesn’t look right until you bend it at just the right places. If you are doing a simple box, it is easy to figure out, but getting just the right spot on a complex bend can be a challenge. His answer? Attach a marker to the gantry so the machine can draw the lines right on the sheet metal.

Sounds easy and if you were willing to do a pen pass separately and then remove the pen and do the plasma cutting it would be relatively easy. However, that seems kind of crude. Mounting it permanently requires a way to raise it up when cutting — and it needs to survive the noisy environment near the torch. The pen would also dry out if you left in uncapped. The answer was using a permanent marker with a click retractor and let the mechanism extend and retract the pen point on command.

Continue reading “Plasma Cutter + Sharpie Is Surprisingly Useful”