When the microcomputer first landed in homes some forty years ago, it came with a simple freedom—you could run whatever software you could get your hands on. Floppy disk from a friend? Pop it in. Shareware demo downloaded from a BBS? Go ahead! Dodgy code you wrote yourself at 2 AM? Absolutely. The computer you bought was yours. It would run whatever you told it to run, and ask no questions.
Today, that freedom is dying. What’s worse, is it’s happening so gradually that most people haven’t noticed we’re already halfway into the coffin.
Over on YouTube, [The Modern Rogue] created an interesting video showing a slide-rule-like encryption device called the Réglette. This was a hardware implementation of a Vigenère-like Cipher, technically referred to as a manual polyalphabetic substitution cipher. The device requires no batteries, is fully waterproof, daylight readable and easy to pack, making it really useful if you find yourself in a muddy trench in the middle of winter during a world war. Obviously, because it’s a slide rule.
Anyway, so how does this cipher work? Well, the ‘polyalphabetic’ bit infers the need for a key phrase, which is indeed the first thing all parties need to agree upon. Secondly, a number is required as a reference point. As you can see from the video, the sliding part of the device has letters of the alphabet, as well as numbers and a special symbol. The body has two series of numbers, with the same spacing as the central, sliding part. A second copy of the sliding part is also needed to slide in behind the first unit. This second copy is neatly stowed below the body during storage.
With each message letter, you lookup the corresponding cipher text number, then shift the slider to the next key phrase letter.
The cipher works by first aligning the starting letter of the (variable-length) key phrase with the reference number. Next, encode the first symbol from the cleartext message (the thing you want to encrypt). You simply look up the letter on the slide and read off either of the numbers next to it. Randomly selecting the left or right set adds an extra bit of strength to the code due to increased entropy. The number is the first symbol for your ciphertext (the thing you want to transmit to the receiver). Next, you move on to the next symbol in the cleartext message. Align the following letter of the key phrase with the reference number, look up the corresponding letter in the message, and transmit the following number onwards. When you run out of key phrase letters, you loop back to the start, and the cycle repeats.
The special symbol we mentioned earlier is not really a ‘blank’; it is a control symbol used to retransmit a new reference number with the existing setup. To change the reference number, the blank character is encoded and sent, followed by the latest reference number. When the blank symbol is received at the other end, the following code is used as the reference number, and the key phrase position is reset to point back to the first letter, restarting the cycle anew. Simple, yes. Effective? Well, not really by modern standards, but at the time of limited computing power (i.e. pen and paper, perhaps a mechanical calculator at best), it would have been sufficient for some uses for a couple of decades.
Why is this Vigenère-like? Well, an actual Vigenère cipher maps letters to other letters, but the Réglette uses numbers, randomly selected, adding entropy, as well as the control code to allow changing the cypher parameter mid-message. This makes it harder to attack; the original Vigenère was considered first-rate cryptography for centuries.
If you’d like to play along at home and learn some other simple ciphers, check this out. Kings and Queens of old frequently used cryptography, including the famous Queen Mary of Scots. Of course, we simply can’t close out an article on cryptography without mentioning the Enigma machine. Here’s one built out of Meccano!
In the last edition of our ongoing series on how planets get ore– those wonderful rocks rich in industrial minerals worth mining– we started talking about hydrothermal fluid deposits. Hydrothermal fluid is the very hot, very salty, very corrosive water that sweats out of magma as it cools underground and under pressure.
We learned that if the fluid stays in the magma chamber and encourages the growth of large crystals there, we call that a pegmatite deposit. If it escapes following cracks in the surface rock, it creates the characteristic veins of an orogenic deposit. What if the fluid gets out of the magma chamber, but doesn’t find any cracks?
Perhaps the surrounding rock is slightly permeable to water, and the hydrothermal fluid can force its way through, eating away at the base rock and remineralizing it with new metals as it goes. That can happen! We call it a porphyry deposit, particularly in igneous rock. It’s not exactly surprising that a hydrothermal fluid would find igneous rock: the fluid is volcanic in origin, after all, just like igneous rock. (That’s the definition of igneous: a rock of volcanic origin.) Igneous rocks, like granite, tend not to be terribly reactive so the fluid can diffuse through relatively unchanged.
Igneous rocks aren’t the only option, though. If the hydrothermal fluid hits carbonates, well, I did mention it’s acidic, right? Acid and carbonates are not friends, so all sorts of chemistry happens, such that geologists give the resulting metamorphic formation a special name: skarn. Though similar in origin, skarns are often considered a different type of deposit, so we’ll talk about the simpler case, diffusion through non-reactive rocks, before getting back to the rocks that sound like an 80s fantasy villain. (Beware Lord Skarn!)
The physical layout of the SCHEME-78 LISP-based microprocessor by Steele and Sussman. (Source: ACM, Vol 23, Issue 11, 1980)
During the AI research boom of the 1970s, the LISP language – from LISt Processor – saw a major surge in use and development, including many dialects being developed. One of these dialects was Scheme, developed by [Guy L. Steele] and [Gerald Jay Sussman], who wrote a number of articles that were published by the Massachusetts Institute of Technology (MIT) AI Lab as part of the AI Memos. This subset, called the Lambda Papers, cover the ideas from both men about lambda calculus, its application with LISP and ultimately the 1980 paper on the design of a LISP-based microprocessor.
Scheme is notable here because it influenced the development of what would be standardized in 1994 as Common Lisp, which is what can be called ‘modern Lisp’. The idea of creating dedicated LISP machines was not a new one, driven by the processing requirements of AI systems. The mismatch between the S-expressions of LISP and the typical way that assembly uses the CPUs of the era led to the development of CPUs with dedicated hardware support for LISP.
The design described by [Steele] and [Sussman] in their 1980 paper, as featured in the Communications of the ACM, features an instruction set architecture (ISA) that matches the LISP language more closely. As described, it is effectively a hardware-based LISP interpreter, implemented in a VLSI chip, called the SCHEME-78. By moving as much as possible into hardware, obviously performance is much improved. This is somewhat like how today’s AI boom is based around dedicated vector processors that excel at inference, unlike generic CPUs.
During the 1980s LISP machines began to integrate more and more hardware features, with the Symbolics and LMI systems featuring heavily. Later these systems also began to be marketed towards non-AI uses like 3D modelling and computer graphics. As however funding for AI research dried up and commodity hardware began to outpace specialized processors, so too did these systems vanish.
Top image: Symbolics 3620 and LMI Lambda Lisp machines (Credit: Jason Riedy)
If you want to print, say, a book, you probably will type it into a word processor. Someone else will take your file and produce pages on a printer. Your words will directly turn on a laser beam or something to directly put words on paper. But for a long time, printing meant creating some physical representation of what you wanted to print that could stamp an imprint on a piece of paper.
The process of carving something out of wood or some other material to stamp out printing is very old. But the revolution was when the Chinese and, later, Europeans, realized it would be more flexible to make symbols that you could assemble texts from. Moveable type. The ability to mass-produce books and other written material had a huge influence on society.
But there is one problem. A book might have hundreds of pages, and each page has hundreds of letters. Someone has to find the right letters, put them together in the right order, and bind them together in a printing press’ chase so it can produce the page in question. Then you have to take it apart again to make more pages. Well, if you have enough type, you might not have to take it apart right away, but eventually you will.
The overall theme of the early part of the Cold War was that of subterfuge — with scientific missions often providing excellent cover for placing missiles right on the USSR’s doorstep. Recently NASA rediscovered Camp Century, while testing a airplane-based synthetic aperture radar instrument (UAVSAR) over Greenland. Although established on the surface in 1959 as a polar research site, and actually producing good science from e.g. ice core samples, beneath this benign surface was the secretive Project Iceworm.
By 1967 the base was forced to be abandoned due to shifting ice caps, which would eventually bury the site under over 30 meters of ice. Before that, the scientists would test out the PM-2A small modular reactor. It not only provided 2 MW of electrical power and heat to the base, but was itself subjected to various experiments. Alongside this public face, Project Iceworm sought to set up a network of mobile nuclear missile launch sites for Minuteman missiles. These would be located below the ice sheet, capable of surviving a first strike scenario by the USSR. A lack of Danish permission, among other complications, led to the project eventually being abandoned.
It was this base that popped up during the NASA scan of the ice bed. Although it was thought that the crushed remains would be safely entombed, it’s estimated that by the year 2100 global warming will have led to the site being exposed again, including the thousands of liters of diesel and tons of hazardous waste that were left behind back in 1967. The positive news here is probably that with this SAR instrument we can keep much better tabs on the condition of the site as the ice cap continues to grind it into a fine paste.
Top image: Camp Century in happier times. (Source: US Army, Wikimedia)
As a classic car enthusiast, my passion revolves around cars with a Made in West Germany stamp somewhere on them, partially because that phrase generally implied a reputation for mechanical honesty and engineering sanity. Air-cooled Volkswagens are my favorites, and in fact I wrote about these, and my own ’72 Super Beetle, almost a decade ago. The platform is incredibly versatile and hackable, not to mention inexpensive and repairable thanks to its design as a practical, affordable car originally meant for German families in the post-war era and which eventually spread worldwide. My other soft-spot is a car that might seem almost diametrically opposed to early VWs in its design philosophy: the Mercedes 300D. While it was a luxury vehicle, expensive and overbuilt in comparison to classic Volkswagens, the engineers’ design choices ultimately earned it a reputation as one of the most reliable cars ever made.
As much as I appreciate these classics, though, there’s almost nothing that could compel me to purchase a modern vehicle from either of these brands. The core reason is that both have essentially abandoned the design philosophies that made them famous in the first place. And while it’s no longer possible to buy anything stamped Made in West Germany for obvious reasons, even a modern car with a VIN starting with a W doesn’t carry that same weight anymore. It more likely marks a vehicle destined for a lease term rather than one meant to be repaired and driven for decades, like my Beetle or my 300D.