Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time

When we talk about HDTV, we’re typically talking about any one of a number of standards from when television made the paradigm switch from analog to digital transmission. At the dawn of the new millenium, high-definition TV was a step-change for the medium, perhaps the biggest leap forward since color transmissions began in the middle of the 20th century.

However, a higher-resolution television format did indeed exist well before the TV world went digital. Over in Japan, television engineers had developed an analog HD format that promised quality far beyond regular old NTSC and PAL transmissions. All this, decades before flat screens and digital TV were ever seen in consumer households!

Continue reading “Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time”

Analog Surround Sound Was Everywhere, But You Probably Didn’t Notice

These days, most of the media we consume is digital. We still watch movies and TV shows, but they’re all packaged in digital files that cram in many millions of pixels and as many audio channels as we could possibly desire.

Back in the day, though, engineering limitations meant that media on film or tape were limited to analog stereo audio at best. And yet, the masterminds at Dolby were able to create a surround sound format that could operate within those very limitations, turning two channels in to four. What started out as a cinematic format would bring surround sound to the home—all the way back in 1982!

Continue reading “Analog Surround Sound Was Everywhere, But You Probably Didn’t Notice”

Ore Formation: Return Of The Revenge Of The Fluids

In the last edition of our ongoing series on how planets get ore– those wonderful rocks rich in industrial minerals worth mining– we started talking about hydrothermal fluid deposits. Hydrothermal fluid is the very hot, very salty, very corrosive water that sweats out of magma as it cools underground and under pressure.

We learned that if the fluid stays in the magma chamber and encourages the growth of large crystals there, we call that a pegmatite deposit. If it escapes following cracks in the surface rock, it creates the characteristic veins of an orogenic deposit. What if the fluid gets out of the magma chamber, but doesn’t find any cracks?

Perhaps the surrounding rock is slightly permeable to water, and the hydrothermal fluid can force its way through, eating away at the base rock and remineralizing it with new metals as it goes. That can happen! We call it a porphyry deposit, particularly in igneous rock. It’s not exactly surprising that a hydrothermal fluid would find igneous rock: the fluid is volcanic in origin, after all, just like igneous rock. (That’s the definition of igneous: a rock of volcanic origin.) Igneous rocks, like granite, tend not to be terribly reactive so the fluid can diffuse through relatively unchanged.

Igneous rocks aren’t the only option, though. If the hydrothermal fluid hits carbonates, well, I did mention it’s acidic, right? Acid and carbonates are not friends, so all sorts of chemistry happens, such that geologists give the resulting metamorphic formation a special name: skarn. Though similar in origin, skarns are often considered a different type of deposit, so we’ll talk about the simpler case, diffusion through non-reactive rocks, before getting back to the rocks that sound like an 80s fantasy villain. (Beware Lord Skarn!)

Continue reading “Ore Formation: Return Of The Revenge Of The Fluids”

Airbags, And How Mercedes-Benz Hacked Your Hearing

Airbags are an incredibly important piece of automotive safety gear. They’re also terrifying—given that they’re effectively small pyrotechnic devices that are aimed directly at your face and chest. Myths have pervaded that they “kill more people than they save,” in part due a hilarious episode of The Simpsons. Despite this, they’re credited with saving tens of thousands of lives over the years by cushioning fleshy human bodies from heavy impacts and harsh decelerations.

While an airbag is generally there to help you, it can also hurt you in regular operation. The immense sound pressure generated when an airbag fires is not exactly friendly to your ears. However, engineers at Mercedes-Benz have found a neat workaround to protect your hearing from the explosive report of these safety devices. It’s a nifty hack that takes advantage of an existing feature of the human body. Let’s explore how air bags work, why they’re so darn loud, and how that can be mitigated in the event of a crash.

Continue reading “Airbags, And How Mercedes-Benz Hacked Your Hearing”

How Regulations Are Trying To Keep Home Battery Installs Safe

The advent of rooftop solar power generation was a huge step forward for renewable energy. No longer was generating electricity the sole preserve of governments and major commercial providers; now just about any homeowner could start putting juice into the grid for a few thousand dollars. Since then, we’ve seen the rise of the home battery, which both promises to make individual homes more self sufficient, whilst also allowing them to make more money selling energy to the grid where needed.

Home batteries are becoming increasingly popular, but as with any new home utility, there come risks. After all, a large capacity battery can present great danger if not installed or used correctly. In the face of these dangers, authorities in jurisdictions around the world have been working to ensure home batteries are installed with due regard for the safety of the occupants of the average home.

Continue reading “How Regulations Are Trying To Keep Home Battery Installs Safe”

Over-Engineering An Egg Cracking Machine

Eggs are perhaps the most beloved staple of breakfast. However, they come with a flaw, they are incredibly messy to work with. Cracking in particular leaves egg on one’s hands and countertop, requiring frequent hand washing. This fundamental flaw of eggs inspired [Stuff Made Here] to fix it with an over-engineered egg cracking robot. 

Continue reading “Over-Engineering An Egg Cracking Machine”

The Sense And Nonsense Of Virtual Power Plants

Over the past decades power grids have undergone a transformation towards smaller and more intermittent generators – primarily in the form of wind and solar generators – as well as smaller grid-connected batteries. This poses a significant problem when it comes to grid management, as this relies on careful management of supply and demand. Quite recently the term Virtual Power Plant (VPP) was coined to describe these aggregations of disparate resources into something that at least superficially can be treated more or less as a regular dispatchable power plant, capable of increasing and reducing output as required.

Although not actual singular power plants, by purportedly making a VPP act like one, the claim is that this provides the benefits of large plants such as gas-fired turbines at a fraction of a cost, and with significant more redundancy as the failure of a singular generator or battery is easily compensated for within the system.

The question is thus whether this premise truly holds up, or whether there are hidden costs that the marketing glosses over.

Continue reading “The Sense And Nonsense Of Virtual Power Plants”