Atoms For Peace: The US Nuclear Fleet Build-Out And Modern-Day Revival

By the end of World War II the world had changed forever, as nuclear weapons were used for the first and – to this date – only time in anger. Although the use of these weapons was barely avoided during the Korean War in the early 1950s, the dawning of the Atomic Age had come in the form of obliterated cities and an increasing number of these weapons being test fired around the world. It was against this background that on December 8, 1953, US President Dwight D. Eisenhower held his ‘Atoms for Peace’ speech, during which he would not only promote the peaceful use of nuclear technologies but also lay the groundwork for what would become the International Atomic Energy Agency (IAEA), as announced in the full speech.

Under the Eisenhower administration the US became one of the world’s nuclear power pioneers, as it competed with the UK and later others in establishing world’s firsts in commercial nuclear power. Dresden Generating Station would become the first purely commercial boiling water reactor (BWR) in 1960 and Yankee-Rowe, the first pressurized water reactor (PWR) in 1961. Following these, the number of new reactors planned and constructed kept increasing year over year, setting the trend for the few decades of the US nuclear power industry.

Today the US operates 94 reactors, which generate nearly 20% of the country’s electricity. Exactly how did the US build so many reactors before 1990, and how does this compare to the recent revival with both new builds and retired plants being put back into service?

Continue reading “Atoms For Peace: The US Nuclear Fleet Build-Out And Modern-Day Revival”

Man Overboard Systems Aim To Increase Survival Rates At Sea

When you hear the cry of “Man Overboard!” on a ship, it’s an emergency situation. The sea is unkind to those that fall from their vessel, and survival is never guaranteed—even in the most favorable conditions. Raging swell and the dark of night can only make rescue more impossible.

Over the centuries, naval tradition has included techniques to find and recover the person in the water as quickly and safely as possible. These days, though, technology is playing an ever-greater role in such circumstances. Modern man-overboard (MOB) systems are designed to give crews of modern vessels a fighting chance when rescuing those in peril.

Continue reading “Man Overboard Systems Aim To Increase Survival Rates At Sea”

Rendering of a JetZero blended wing body aircraft with US Air Force markings. (Credit: US Air Force)

Blended Wing Body Passenger Airplanes And The End Of Winged Tubes

The SR-71 with its blended wing body design. (Photo by Tech. Sgt. Michael Haggerty, US Air Force, 1988)
The SR-71 with its blended wing body design. (Photo by Tech. Sgt. Michael Haggerty, US Air Force, 1988)

Ask someone to picture an airplane and they’re likely to think of what is essentially a tube with wings and a stabilizing tail tacked onto one end of said tube. Yet it is also no secret that the lift produced by such a tube is rather poor, even if they’re straightforward for loading cargo (static and self-loading) into them and for deciding where to put in windows. Over the decades a number of alternative airplane designs have been developed, with some of them also ending up being produced. Here most people are probably quite familiar with the US Air Force’s B-2 Spirit bomber and its characteristic flying wing design, while blended wing body (BWB) maintains a somewhat distinctive fuselage, as with for example the B-1 Lancer.

Outside of military airplanes BWBs are a pretty rare sight. Within the world of passenger airplanes the tube-with-wings pattern that the first ever passenger airplanes adopted has persisted with the newest designs, making it often tricky to distinguish one airplane from another. This could soon change, however, with a strong interest within the industry for passenger-oriented BWBs. The reason for this are the significant boosts in efficiency, quieter performance and more internal (useful) volume, which makes airline operators very happy, but which may also benefit passengers.

With that said, how close are we truly to the first BWB passenger airplane delivery to an airline?

Continue reading “Blended Wing Body Passenger Airplanes And The End Of Winged Tubes”

Hacker Tactic: Building Blocks

The software and hardware worlds have overlaps, and it’s worth looking over the fence to see if there’s anything you missed. You might’ve already noticed that we hackers use PCB modules and devboards in the same way that programmers might use libraries and frameworks. You’ll find way more parallels if you think about it.

Building blocks are about belonging to a community, being able to draw from it. Sometimes it’s a community of one, but you might just find that building blocks help you reach other people easily, touching upon common elements between projects that both you and some other hacker might be planning out. With every building block, you make your or someone else’s next project quicker, and maybe you make it possible.

Sometimes, however, building blocks are about being lazy.

Continue reading “Hacker Tactic: Building Blocks”

Mining And Refining: Mine Dewatering

From space, the most striking feature of our Pale Blue Dot is exactly what makes it blue: all that water. About three-quarters of the globe is covered with liquid water, and our atmosphere is a thick gaseous soup laden with water vapor. Almost everywhere you look there’s water, and even where there’s no obvious surface water, chances are good that more water than you could use in a lifetime lies just below your feet, and accessing it could be as easy as an afternoon’s work with a shovel.

And therein lies the rub for those who delve into the Earth’s depths for the minerals and other resources we need to function as a society — if you dig deep enough, water is going to become a problem. The Earth’s crust holds something like 44 million cubic kilometers of largely hidden water, and it doesn’t take much to release it from the geological structures holding it back and restricting its flow. One simple mineshaft chasing a coal seam or a shaft dug in the wrong place, and suddenly all the hard-won workings are nothing but flooded holes in the ground. Add to that the enormous open-pit mines dotting the surface of the planet that resemble nothing so much as empty lakes waiting to fill back up with water if given a chance, and the scale of the problem water presents to mining operations becomes clear.

Dewatering mines is a complex engineering problem, one that intersects and overlaps multiple fields of expertise. Geotechnical engineers work alongside mining engineers, hydrogeologists, and environmental engineers to devise cost-effective ways to control the flow of water into mines, redirect it when they can, and remove it when there’s no alternative.

Continue reading “Mining And Refining: Mine Dewatering”

Mining And Refining: Lead, Silver, And Zinc

If you are in need of a lesson on just how much things have changed in the last 60 years, an anecdote from my childhood might suffice. My grandfather was a junk man, augmenting the income from his regular job by collecting scrap metal and selling it to metal recyclers. He knew the current scrap value of every common metal, and his garage and yard were stuffed with barrels of steel shavings, old brake drums and rotors, and miles of copper wire.

But his most valuable scrap was lead, specifically the weights used to balance car wheels, which he’d buy as waste from tire shops. The weights had spring steel clips that had to be removed before the scrap dealers would take them, which my grandfather did by melting them in a big cauldron over a propane burner in the garage. I clearly remember hanging out with him during his “melts,” fascinated by the flames and simmering pools of molten lead, completely unconcerned by the potential danger of the situation.

Fast forward a few too many decades and in an ironic twist I find myself living very close to the place where all that lead probably came from, a place that was also blissfully unconcerned by the toxic consequences of pulling this valuable industrial metal from tunnels burrowed deep into the Bitterroot Mountains. It didn’t help that the lead-bearing ores also happened to be especially rich in other metals including zinc and copper. But the real prize was silver, present in such abundance that the most productive silver mine in the world was once located in a place that is known as “Silver Valley” to this day. Together, these three metals made fortunes for North Idaho, with unfortunate side effects from the mining and refining processes used to win them from the mountains.

Continue reading “Mining And Refining: Lead, Silver, And Zinc”

Fukushima Daiichi: Cleaning Up After A Nuclear Accident

On 11 March, 2011, a massive magnitude 9.1 earthquake shook the west coast of Japan, with the epicenter located at a shallow depth of 32 km,  a mere 72 km off the coast of Oshika Peninsula, of the Touhoku region. Following this earthquake, an equally massive tsunami made its way towards Japan’s eastern shores, flooding many kilometers inland. Over 20,000 people were killed by the tsunami and earthquake, thousands of whom were dragged into the ocean when the tsunami retreated. This Touhoku earthquake was the most devastating in Japan’s history, both in human and economic cost, but also in the effect it had on one of Japan’s nuclear power plants: the six-unit Fukushima Daiichi plant.

In the subsequent Investigation Commission report by the Japanese Diet, a lack of safety culture at the plant’s owner (TEPCO) was noted, along with significant corruption and poor emergency preparation, all of which resulted in the preventable meltdown of three of the plant’s reactors and a botched evacuation. Although afterwards TEPCO was nationalized, and a new nuclear regulatory body established, this still left Japan with the daunting task of cleaning up the damaged Fukushima Daiichi nuclear plant.

Removal of the damaged fuel rods is the biggest priority, as this will take care of the main radiation hazard. This year TEPCO has begun work on removing the damaged fuel inside the cores, the outcome of which will set the pace for the rest of the clean-up.

Continue reading “Fukushima Daiichi: Cleaning Up After A Nuclear Accident”