Mining And Refining: Quartz, Both Natural And Synthetic

So far in this series, pretty much every material we’ve covered has had to undergo a significant industrial process to transform it from its natural state to a more useful product. Whether it’s the transformation of bauxite from reddish-brown clay to lustrous aluminum ingots, or squeezing solid sulfur out of oil and natural gas, there haven’t been many examples of commercially useful materials that are taken from the Earth and used in their natural state.

Quartz, though, is at least a partial exception to this rule. Once its unusual electrical properties were understood, crystalline quartz was sent directly from quarries and mines to factories, where they were turned into piezoelectric devices with no chemical transformation whatsoever. The magic of crystal formation had already been done by natural processes; all that was needed was a little slicing and dicing.

As it turns out, though, quartz is so immensely useful for a technological society that there’s no way for the supply of naturally formed crystals to match demand. Like copper before it, which was first discovered in natural metallic deposits that could be fashioned into tools and decorations more or less directly, we would need to discover different sources for quartz and invent chemical transformations to create our own crystals, taking cues from Mother Nature’s recipe book on the way.

Continue reading “Mining And Refining: Quartz, Both Natural And Synthetic”

You’ve Got Mail: Straining The Limits Of Machine And Man

When we last left this subject, I told you all about Transorma, the first letter-sorting machine in semi-wide use. But before and since Transorma, machines have come about to perform various tasks on jumbled messes of mail — things like distinguishing letters from packages, making sure letters are all facing the same way before cancelling the postage, and the gargantuan task of getting huge piles of mail into the machines in the first place. So let’s dive right in, shall we?

Continue reading “You’ve Got Mail: Straining The Limits Of Machine And Man”

Converting Wind To Electricity Or: The Doubly-Fed Induction Generator

Humanity has been harvesting energy from the wind for centuries. The practice goes back at least to 8th century Persia where the first known historical records of windmills came, but likely extends even further back than that. Compared to the vast history of using wind energy directly to do things like mill grain, pump water, saw wood, or produce fabrics, the production of electricity is still relatively new. Despite that, there are some intriguing ways of using wind to produce electricity. Due to the unpredictable nature of wind from moment to moment, using it to turn a large grid-tied generator is not as straightforward as it might seem. Let’s take a look at four types of wind turbine configurations and how each deal with sudden changes in wind speeds. Continue reading “Converting Wind To Electricity Or: The Doubly-Fed Induction Generator”

Smart Garbage Trucks Help With Street Maintenance

If you’ve ever had trouble with a footpath, bus stop, or other piece of urban infrastructure, you probably know the hassles of dealing with a local council. It can be incredibly difficult just to track down the right avenue to report issues, let alone get them sorted in a timely fashion.

In the suburban streets of one Australian city, though, that’s changing somewhat. New smart garbage trucks are becoming instruments of infrastructure surveillance, serving a dual purpose that could reshape urban management. Naturally, though, this new technology raises issues around ethics and privacy.

Continue reading “Smart Garbage Trucks Help With Street Maintenance”

Sharkskin Coating Reduces Airliner Fuel Use, Emissions

The aviation industry is always seeking advancements to improve efficiency and reduce carbon emissions. The former is due to the never-ending quest for profit, while the latter helps airlines maintain their social license to operate. Less cynically, more efficient technologies are better for the environment, too.

One of the latest innovations in this space is a new sharkskin-like film applied to airliners to help cut drag. Inspired by nature itself, it’s a surface treatment technology that mimics the unique characteristics of sharkskin to enhance aircraft efficiency. Even better, it’s already in commercial service! Continue reading “Sharkskin Coating Reduces Airliner Fuel Use, Emissions”

Giving Solar Power’s Mortal Enemies A Dusting Without Wasting Water

A prerequisite for photovoltaic (PV) and concentrated solar power (CSP) technologies to work efficiently is as direct an exposure to the electromagnetic radiation from the sun as possible. Since dust and similar particulates are excellent at blocking the parts of the EM spectrum that determine their efficiency, keeping the panels and mirrors free from the build-up of dust, lichen, bird droppings and other perks of planetary life is a daily task for solar farm operators. Generally cleaning the panels and mirrors involves having trucks drive around with a large water tank to pressure wash the dirt off, but the use of so much water is problematic in many regions.

Keeping PV panels clean is also a consideration on other planets than Earth. So far multiple Mars rovers and landers have found their demise at the hands of Martian dust after a layer covered their PV panels, and Moon dust (lunar regolith) is little better. Despite repeated suggestions by the peanut gallery to install wipers, blowers or similar dust removal techniques, keeping particulates from sticking to a surface is not as easy an engineering challenge as it may seem, even before considering details such as the scaling issues between a singular robot on Mars versus millions of panels and mirrors on Earth.

There has been research into the use of the electrostatic effect to repel dust, but is there a method that can keep both solar-powered robots on Mars and solar farms on Earth clean and sparkling, rather than soiled and dark?

Continue reading “Giving Solar Power’s Mortal Enemies A Dusting Without Wasting Water”

Screwdrivers And Nuclear Safety: The Demon Core

Harry Daghlian and Louis Slotin were two of many people who worked on the Manhattan Project. They might not be household names, but we believe they are the poster children for safety procedures. And not in a good way.

Harry Daghlian (CC-BY-SA 3.0, Arnold Dion)

Slotin assembled the core of the “Gadget” — the plutonium test device at the Trinity test in 1945. He was no stranger to working in a lab with nuclear materials. It stands to reason that if you are making something as dangerous as a nuclear bomb, it is probably hazardous work. But you probably get used to it, like some of us get used to working around high voltage or deadly chemicals.

Making nuclear material is hard and even more so back then. But the Project had made a third plutonium core — one was detonated at Trinity, the other over Nagasaki, and the final core was meant to go into a proposed second bomb that was not produced.

The cores were two hemispheres of plutonium and gallium. The gallium allowed the material to be hot-pressed into spherical shapes. Unlike the first two cores, however, the third one — one that would later earn the nickname “the demon core” — had a ring around the flat surfaces to contain nuclear flux during implosion. The spheres are not terribly dangerous unless they become supercritical, which would lead to a prompt critical event. Then, they would release large amounts of neutrons. The bombs, for example, would force the two halves together violently. You could also add more nuclear material or reflect neutrons back into the material.

Continue reading “Screwdrivers And Nuclear Safety: The Demon Core”