Retrotechtacular: Oh Boy! We’re Radio Engineers!

It is a shame that there are fewer and fewer “nerd stores” around. Fry’s is gone. Radio Shack is gone. But the best ones were always the places that had junk. Silicon valley was great for these places, but they were everywhere. Often, they made their money selling parts to the repair trade, but they had a section for people like us. There’s still one of these stores in the Houston, Texas area. One of the two original Electronic Parts Outlets, or EPO. Walking through there is like a museum of old gear and parts and I am not ashamed to confess I sometimes drive the hour from my house just to wander its aisles, needing to buy absolutely nothing. It was on one of those trips that I spied something I hadn’t noticed before. A Remco Caravelle transmitter/receiver.

The box was clearly old and the styling of the radio was decidedly retro. You can tell it wasn’t catering to the modern market because it mentions: “play ham radio operator” which would surely mystify most of today’s kids. The unit was an AM receiver and a transmitter, complete with a morse code key and microphone. You can see a contemporary commercial for a similar unit from Remco, in the video below.

Continue reading “Retrotechtacular: Oh Boy! We’re Radio Engineers!”

Retrotechtacular: 1990s CD Mastering Fit For A King

Before it was transformed into an ephemeral stream of ones and zeroes, music used to have a physical form of some kind. From wax cylinders to vinyl discs to tapes of various sizes in different housings and eventually to compact discs, each new medium was marketed as a technological leap over the previous formats, each of which justified incrementally more money to acquire.

But that’s the thing — each purchase resulted in you obtaining a physical item, which had an extensive manufacturing and distribution process behind it. And few artists demanded more manufacturing effort than Michael Jackson in his heyday, as revealed by this in-depth look at the CD manufacturing process for The King of Pop’s release of the HIStory double-disc set in 1995.

The video was produced as sort of a love letter to Michael from the staff and management of the Sony Music disc manufacturing plant in Pittman, New Jersey. The process is shown starting with the arrival of masters to the plant, strangely in the form of U-matic videocassettes; the 3/4″ continuous loop tape was normally used for analog video, but could also be used for recording digital audio. The digital audio is then sent for glass mastering, which is where the actual pits are created on a large glass disc under cleanroom conditions. In fact, much of the production process bears a strong similarity to semiconductor manufacturing, from the need for cleanrooms — although under less stringent conditions than in a fab — to the use of plasma etching, vapor deposition, and metal plating operations.

Once the master stampers are made, things really ramp up in replication. There the stamper discs go into injection molding machines, where hot polycarbonate is forced against the surface under pressure. The copies are aluminized, spin-coated with UV-cure lacquer, and sent on down the line to testing, screen printing, and packaging. Sony hired 40 extra full-time workers, who appear to have handled all the tedious manual tasks like assembling the jewel cases, to handle the extra load of this release.

As cheesy as this thank-you video may be, it was likely produced with good reason. This was a time when a Michael Jackson release was essentially a guarantee of full employment for a large team of workers. The team was able to produce something like 50,000 copies a day, and given that HIStory sold over 20 million copies, that’s a lot of workdays for the good folks at Pittman.

Continue reading “Retrotechtacular: 1990s CD Mastering Fit For A King”

Retrotechtacular: The Forgotten Vacuum Tube A/D Converters Of 1965

In any era, the story of electronics has very much been about figuring out how to make something happen with what’s available at the time. And as is often the case, the most interesting developments come from occasions when needs exceed what’s available. That’s when real innovation takes place, even if circumstances conspire to keep the innovation from ever taking hold in the marketplace.

This gem of a video from the Antique Wireless Association has a perfect example of this: the long-lost analog-to-digital converter vacuum tube. Like almost every mid-20th-century innovation in electronics, this one traces its roots back to the Bell Laboratories, which was keenly interested in improving bandwidth on its massive network of copper lines and microwave links. As early as 1947, one Dr. Frank Gray, a physicist at Bell Labs, had been working on a vacuum tube that could directly convert an analog signal into a digital representation. His solution was a cathode ray tube similar to the CRT in an oscilloscope. A beam of electrons would shine down the length of the tube onto a shadow mask containing holes arranged in a “reflected binary code,” which would later be known as a Gray code. The analog signal to be digitized was applied to a pair of vertical deflector plates, which moved the beam into a position along the plate corresponding to the voltage. A pair of horizontal deflector plates would then scan the beam across the shadow mask; where electrons fell on a hole, they would pass through to an output plate to be registered as a bit to be set.

Continue reading “Retrotechtacular: The Forgotten Vacuum Tube A/D Converters Of 1965”

Retrotechtacular: Clay Pipe The Hard Way

Troll YouTube long enough and chances are good that you’ll come across all kinds of videos of the “How It’s Made” genre. And buried in with the frying pans and treadmills and dental floss manufacturers, there no doubt will be deep dives on how pipe is made. Methods will vary by material, but copper, PVC, cast iron, or even concrete, what the pipe factories will all have in common is the high degree of automation they employ. With a commodity item like pipe, it’s hard to differentiate yourself from another manufacturer on features, so price is about the only way to compete. That means cutting costs to the bone, and that means getting rid of as many employees as possible.

Such was not always the case, of course, as this look at how Irish Stoneware & Fireclays Ltd. made clay pipe, drain tiles, and chimney flues back in the 1980s shows. The amount of handwork involved in making a single, simple piece of clay pipe is astonishing, as is the number of hands employed at the various tasks. The factory was located in Carrickmacross, County Monaghan, Ireland, near an outcropping of shale that forms the raw material for its products. Quarrying the shale and milling it into clay were among the few mechanized steps in the process; although the extrusion of the pipe itself was also mechanized, the machines required teams of workers to load and unload them.

Continue reading “Retrotechtacular: Clay Pipe The Hard Way”

Retrotechtacular: How Television Worked In The 1950s

Watching television today is a very different experience from that which our parents would have had at our age, where we have high-definition digital on-demand streaming services they had a small number of analogue channels serving linear scheduled broadcasting. A particular film coming on TV could be a major event that it was not uncommon for most of the population to have shared, and such simple things as a coffee advert could become part of our common cultural experience. Behind it all was a minor miracle of synchronised analogue technology taking the signal from studio to living room, and this is the subject of a 1952 Coronet film, Television: How It Works!  Sit back and enjoy a trip into a much simpler world in the video below the break.

Filming a TV advert: 1950s housewife sells cooker
Production values for adverts had yet to reach their zenith in the 1950s.

After an introduction showing the cultural impact of TV in early-50s America there’s a basic intro to a cathode-ray tube, followed by something that may be less familiar to many readers, the Image Orthicon camera tube that formed the basis of most TV signals of that era.

It’s written for the general public, so the scanning raster of a TV image is introduced through the back-and-forth of reading a book, and then translated into how the raster is painted on the screen with the deflection coils and the electron gun. It’s not overly simplified though, for it talks about how the picture is interlaced and shows how a synchronisation pulse is introduced to keep all parts of the system working together.

A particularly fascinating glimpse comes in a brief mention of the solid copper co-axial cable and overland microwave links used to transmit TV signals across country, these concrete towers can still be seen today but they no longer have the colossal horn antennas we can see in the film.

A rather obvious omission in this film is the lack of any mention of colour TV, as while it would be late 1953 before the NTSC standard was formally adopted and early 1954 before the first few colour sets would go on sale. Colour TV would have been very much the Next Big Thing in 1952, but with no transmissions to watch and a bitter standards war still raging between the field-sequential CBS system and RCA’s compatible dot-sequential system that would eventually evolve into the NTSC standard  it’s not surprising that colour TV was beyond the consumer audience of the time.

Thus we’re being introduced to the 525-line standard which many think of as NTSC video, but without the NTSC compatible colour system that most of us will be familiar with. The 525-line analogue standard might have disappeared from our living rooms some time ago, but as the last few stations only came off-air last year we’d say it had a pretty good run.

We like analogue TV a lot here at Hackaday, and this certainly isn’t the first time we’ve gone all 525-line. Meanwhile for a really deep dive into the inner workings of TV signal timing, get ready to know your video waveform.

Continue reading “Retrotechtacular: How Television Worked In The 1950s”

Retrotechtacular: The Power To Stop

In everyday life, the largest moving object most people are likely to encounter is probably a train. Watching a train rolling along a track, it’s hard not to be impressed with the vast amount of power needed to put what might be a mile-long string of hopper cars carrying megatons of freight into motion.

But it’s the other side of that coin — the engineering needed to keep that train under control and eventually get it to stop — that’s the subject of this gem from British Transport Films on “The Power to Stop.” On the face of it, stopping a train isn’t exactly high-technology; the technique of pressing cast-iron brake shoes against the wheels was largely unchanged in the 100 years prior to the making of this 1979 film. The interesting thing here is the discovery that the metallurgy of the iron used for brakes has a huge impact on braking efficiency and safety. And given that British Railways was going through about 3.5 million brake shoes a year at the time, anything that could make them last even a little longer could result in significant savings.

It was the safety of railway brakes, though, that led to research into how they can be improved. Noting that cast iron is brittle, prone to rapid wear, and liable to create showers of dangerous sparks, the research arm of British Railways undertook a study of the phosphorus content of the cast iron, to find the best mix for the job. They turned to an impressively energetic brake dynamometer for their tests, where it turned out that increasing the amount of the trace element greatly reduced wear and sparking while reducing braking times.

Although we’re all for safety, we have to admit that some of the rooster-tails of sparks thrown off by the low-phosphorus shoes were pretty spectacular. Still, it’s interesting to see just how much thought and effort went into optimizing something so seemingly simple. Think about that the next time you watch a train go by.

Continue reading “Retrotechtacular: The Power To Stop”

Retrotechtacular: A DIY Television For Very Early Adopters

By our very nature, hackers tend to get on the bandwagon of new technology pretty quickly. When something gee-whiz comes along, it’s folks like us who try it out, even if that means climbing steep learning curves or putting together odd bits of technology rather than waiting for the slicker products that will come out if the new thing takes off. But building your own television receiver in 1933 was probably pushing the envelope for even the earliest of adopters.

“Cathode Ray Television,” reprinted by the Antique Valve Museum in all its Web 1.0 glory, originally appeared in the May 27, 1933 edition of Popular Wireless magazine, and was authored by one K D Rogers of that august publication’s Research Department. They apparently took things quite seriously over there at the time, at least judging by the white lab coats and smoking materials; nothing said serious research in the 1930s quite like a pipe. The flowery language and endless superlatives that abound in the text are a giveaway, too; it’s hard to read without affecting a mental British accent, or at least your best attempt at a Transatlantic accent.

In any event, the article does a good job showing just what was involved in building a “vision radio receiver” and its supporting circuitry back in the day. K D Rogers goes into great detail explaining how an “oscillograph” CRT can be employed to display moving pictures, and how his proposed electronic system is vastly superior to the mechanical scanning systems that were being toyed with at the time. The build itself, vacuum tube-based though it was, went through the same sort of breadboarding process we still use today, progressing to a finished product in a nice wood cabinet, the plans for which are included.

It must have been quite a thrill for electronics experimenters back then to be working on something like television at a time when radio was only just getting to full market penetration. It’s a bit of a puzzle what these tinkerers would have tuned into with their DIY sets, though — the airwaves weren’t exactly overflowing with TV broadcasts in 1933. But still, someone had to go first, and so we tip our hats to the early adopters who figured things out for the rest of us.

Thanks to [BT] for the tip.