Prototyping PCBs With Electrical Discharge Machining

Here at Hackaday, we thought we’d seen every method of making PCBs: CNC machining, masking and etching with a variety of chemicals, laser engraving, or even the crude but effective method of scratching away the copper with a utility knife. Whatever works is fine with us, really, but there still does seem to be room for improvement in the DIY PCB field. To whit, we present rapid PCB prototyping with electrical discharge machining.

Using an electric arc to selectively ablate the copper cladding on a PCB seems like a great idea. At least that’s how it seemed to [Jake Wachlin] when he realized that the old trick of cutting a sheet of aluminum foil using a nine-volt battery and a pencil lead is really just a form of EDM, and that the layer of copper on a PCB is not a million miles different from foil. A few experiments with a bench power supply and a mechanical pencil lead showed that it’s relatively easy to blast the copper from a blank board, so [Jake] took the next logical step and rigged up an old 3D-printer to move the tool. The video below shows the setup and some early tests; it’s not perfect by a long shot, but it has a lot of promise. If he can control the arc better, this homebrew EDM looks like it could very rapidly produce prototype boards.

[Jake] posted this project in its current state in the hopes of stimulating a discussion and further experimentation. That’s commendable, and we’d really love to see this one move along rapidly. You might start your brainstorming by looking at this somewhat sketchy mains-powered EDM, or look into the whole field in a little more detail.

Continue reading “Prototyping PCBs With Electrical Discharge Machining”

Magnetic Bearings Might Keep This Motor Spinning For Millennia

We see our share of pitches for perpetual motion machines in the Hackaday tips line, and we generally ignore them and move along. And while this magnetic levitation motor does not break the laws of thermodynamics, it can be considered a perpetual motion machine, at least for certain values of perpetuity.

The motor that [lasersaber] presents in the video below is unconventional, to say the least. It’s not a motor that can do any useful work, spinning at a stately pace beneath its bell-jar enclosure as it does. The design is an extension of [lasersaber]’s “EZ-Spin” motor, which we’ve featured before, and has the same basic layout – a ring of coils wired in series forms the stator, while a disc bearing permanent magnets forms the rotor. The coils, scavenged from those dancing flowerpot solar ornaments, are briefly energized by the rotor passing over a reed switch, giving the rotor a little boost.

The difference here is that rather than low-friction sapphire bearings, this motor uses zero-friction magnetic levitation using pyrolyzed graphite discs. The diamagnetic material hovers above a rare-earth ring magnet, supporting a slender vertical shaft that holds the rotor and another magnetic bearing at the top. It’s fussy to adjust, but once it’s stable, the only friction in the system should be the drag caused by air in the bell jar. [lasersaber]’s current measurements of the motor running at slow speed are hard to believe – 150 nanoamps – leading to an equally jaw-dropping calculated run-time on a single AA battery of 89 millennia.

[lasersaber] is the first to admit that he’s not confident with his measurements, but it seems clear that his motor will likely outlive any chemical battery used to power it. Whatever the numbers are, we like the styling of the thing, and the magnetic bearings are cool too.

Continue reading “Magnetic Bearings Might Keep This Motor Spinning For Millennia”

DIY Arc Light Makes An Unnecessarily Powerful Bicycle Headlight

Remember when tricking out a bike with a headlight meant clamping a big, chrome, bullet-shaped light to your handlebar and bolting a small generator to your front fork? Turning on the headlight meant flipping the generator into contact with the front wheel, powering the incandescent bulb for the few feet it took for the drag thus introduced to grind you to a halt. This ridiculous arc-lamp bicycle headlight is not that. Not by a long shot.

We’re used to seeing [Alex] doing all manner of improbable, and sometimes impossible, things on his popular KREOSAN YouTube channel. And we’re also used to watching his videos in Russian, which detracts not a whit  from the entertainment value for Andglophones; subtitles are provided for the unadventurous, however. The electrodes for his arc light are graphite brushes from an electric streetcar, while the battery is an incredibly sketchy-looking collection of 98 18650 lithium-ion cells. A scary rat’s nest of coiled cable acts as a ballast to mitigate the effects of shorting when the arc is struck. The reflector is an old satellite TV dish covered in foil tape with the electrodes sitting in a makeshift holder where the feedhorn used to be. It’s bright, it’s noisy, it’s dangerous, and it smokes like a fiend, but we love it.

Mounting it to the front of the bike was just for fun, of course, and it works despite the janky nature of the construction. The neighbors into whose apartments the light was projected could not be reached for comment, but we assume they were as amused as we were.

Continue reading “DIY Arc Light Makes An Unnecessarily Powerful Bicycle Headlight”

Graphene From Graphite By Electrochemical Exfoliation

Graphene is an interesting material, but making enough of the stuff to do something useful can be a little tough. That’s why we’re always on the lookout for new methods, like this electrochemical process for producing graphene in bulk.

You probably know that graphene is a molecular monolayer of carbon atoms linked in hexagonal arrays. Getting to that monolayer is a difficult proposition, but useful bits of graphene can be created by various mechanical and chemical treatments of common graphite. [The Thought Emporium]’s approach to harvesting graphene from graphite is a two-step process starting with electrochemical exfoliation. Strips of thin graphite foil are electrolyzed in a bath of ferrous sulfate, resulting in the graphite delaminating and flaking off into the electrolyte. After filtering and cleaning, the almost graphene is further exfoliated in an ultrasonic cleaner. The result is gram quantity yields with very little work and at low cost.

There’s plenty of effort going into new methods of creating graphene these days, whether by barely controlled explosions or superheating soybean oil. But will graphene be the Next Big Thing? The jury is still out on that.

Continue reading “Graphene From Graphite By Electrochemical Exfoliation”

Celebrating A Subscriber Milestone With A Copper YouTube Play Button

YouTube channels unboxing their latest “Play Button Award,” a replica of the famous logo in silver, gold, or faux-diamond depending on the popularity of the channel, are getting passé. But a metalworking channel that makes its own copper Play Button award to celebrate 25,000 subs is something worth watching.

[Chris DePrisco] is a bit of a jack-of-all-trades, working in various materials but with a strong focus on metalwork. He recently completed a beefy home-brew vertical milling center; we covered his attempt to leverage that platform by adding an extruder and turning it into a large bed 3D printer. For the Play Button build, [Chris] turned to the VMC to mill a mold from what appears to be a block of graphite; good luck cleaning that mess up. He melted copper scrap in a homemade electric furnace and poured it into the preheated mold — a solid tip for [The King of Random]’s next copper casting attempt. The rough blank was CNC machined and polished into the Play Button, and finally mounted behind glass neatly inked with paint pens in the versatile VMC. The final result is far nicer than any of the other Button awards, at least in our opinion.

Continue reading “Celebrating A Subscriber Milestone With A Copper YouTube Play Button”

Flexible, Sensitive Sensors From Silly Putty And Graphene

Everyone’s favorite viscoelastic non-Newtonian fluid has a new use, besides bouncing, stretching, and getting caught in your kid’s hair. Yes, it’s Silly Putty, and when mixed with graphene it turns out to make a dandy force sensor.

To be clear, [Jonathan Coleman] and his colleagues at Trinity College in Dublin aren’t buying the familiar plastic eggs from the local toy store for their experiments. They’re making they’re own silicone polymers, but their methods (listed in this paywalled article from the journal Science) are actually easy to replicate. They just mix silicone oil, or polydimethylsiloxane (PDMS), with boric acid, and apply a little heat. The boron compound cross-links the PDMS and makes a substance very similar to the bouncy putty. The lab also synthesizes its own graphene by sonicating graphite in a solvent and isolating the graphene with centrifugation and filtration; that might be a little hard for the home gamer to accomplish, but we’ve covered a DIY synthesis before, so it should be possible.

With the raw materials in hand, it’s a simple matter of mixing and kneading, and you’ve got a flexible, stretchable sensor. [Coleman] et al report using sensors fashioned from the mixture to detect the pulse in the carotid artery and even watch the footsteps of a spider. It looks like fun stuff to play with, and we can see tons of applications for flexible, inert strain sensors like these.

Continue reading “Flexible, Sensitive Sensors From Silly Putty And Graphene”

Diamond Batteries That Last For Millennia

Like many industrialized countries, in the period after the Second World War the United Kingdom made significant investments in the field of nuclear reactors. British taxpayers paid for reactors for research, the military, and for nuclear power.

Many decades later that early crop of reactors has now largely been decommissioned. Power too cheap to meter turned into multi-billion pound bills for safely coping with the challenges posed by many different types of radioactive waste generated by the dismantling of a nuclear reactor, and as the nuclear industry has made that journey it in turn has spawned a host of research projects based on the products of the decommissioning work.

One such project has been presented by a team at Bristol University; their work is on the property of diamonds in generating a small electrical current when exposed to radioactive emissions. Unfortunately their press release and video does not explain the mechanism involved and our Google-fu has failed to deliver, but if we were to hazard a guess we’d ask them questions about whether the radioactivity changes the work function required to release electrons from the diamond, allowing the electricity to be harvested through a contact potential difference. Perhaps our physicist readers can enlighten us in the comments.

So far their prototype uses a nickel-63 source, but they hope to instead take carbon-14 from the huge number of stockpiled graphite blocks from old reactors, and use it to create radioactive diamonds that require no external source. Since the output of the resulting cells will be in proportion to their radioactivity their life will be in the same order of their radioactive half-life. 5730 years for half-capacity in the case of carbon-14.

Of course, it is likely that the yield of electricity will not be high, with tiny voltages and currents this may not represent a free energy miracle. But it will be of considerable interest to the designers of ultra-low-maintenance long-life electronics for science, the space industry, and medical implants.

We’ve put their video below the break. It’s a straightforward explanation of the project, though sadly since it’s aimed at the general public it’s a little short on some of the technical details. Still, it’s one to watch.

Continue reading “Diamond Batteries That Last For Millennia”