Antenna Hidden In Holiday Lights Skirts HOA Rules

For all their supposed benefits, homeowner’s associations (HOAs) have a reputation of quickly turning otherwise quaint neighborhoods into a sort of Stanford prison experiment, as those who get even the slightest amount of power often abuse it. Arbitrary rules and enforcement abound about house color, landscaping, parking, and if you’ve ever operated a radio, antennas. While the FCC (at least as far as the US is concerned) does say that HOAs aren’t permitted to restrict the use of antennas, if you don’t want to get on anyone’s bad side you’ll want to put up an antenna like this one which is disguised as a set of HOA-friendly holiday lights.

For this build, a long wire is hidden along with a strand of otherwise plain-looking lights. While this might seem straightforward at first, there are a few things that need to be changed on the lighting string in order to make both the antenna and the disguise work. First, the leads on each bulb were removed to to prevent any coupling from the antenna into the lighting string. Clipping the leads turns what is essentially a long wire that might resonate with the antenna’s frequency into many short sections of wire which won’t have this problem. This also solves the problem of accidentally illuminating any bulbs when transmitting, as the RF energy from the antenna could otherwise transfer into the lighting string and draw attention from the aforementioned HOA.

Tests of this antenna seemed to show surprising promise while it was on the ground, but when the string and antenna was attached to the roof fascia the performance dropped slightly, presumably because of either the metal drip edge or the gutters. Still, the antenna’s creator [Bob] aka [HOA Ham] had excellent success with this, making clear contacts with other ham radio operators hundreds of miles away. We’ve shared another of [Bob]’s HOA-friendly builds below as well which hides the HF antenna in the roof’s ridge vent, and if you’re looking for other interesting antenna builds take a look at this one which uses a unique transformer to get wide-band performance out of an otherwise short HF antenna.

Continue reading “Antenna Hidden In Holiday Lights Skirts HOA Rules”

The sensor hub in all its glory, sensor itself on top, standing on 3D-printed feet, and the PCB on the bottom

Hacker-Friendly And Elegant Air Quality Sensor Hub

Ever wanted an indoor environment sensor that’s dead simple yet a complete package? That’s the anotter-sensor-hub project from [Jana Marie], designed for the Sensirion SEN05x series sensors, with a SEN055 sensor shown in the picture above. Given such a sensor, you can measure VOCs and NOCs (Volatile and Non-Volatile Organic Compounds), as well as PM1, PM2.5, PM4 and PM10 particulate matter indices, with temperature and humidity sensing thrown in for good measure. Fully open and coupled with 3D printable stand files, this alone makes for an air quality hub fit for a hacker’s desk. That’s not all, however — this board’s elegant extensibility is a good match for the sensor’s impressive capabilities!

The PCB itself might look simple, it’s simply an ESP32 and some supporting circuitry required. But you’ll notice there’s also a trove of connector footprints for different interfaces; whatever else you might want to add to your sensor hub, whether it connects through I2C, SPI or PWM, you can! As usual, the sensor itself is the most expensive part of such a project — the boards themselves are around $5 USD apiece fully assembled, but one sensor-included hub will set you back roughly $42 USD. That said, it’s a great value for the price, and the trove of sensing data you can get might just more than pay for itself in quality-of-life improvements you make. Of course, everything is open-source and comes as a complete packages for you to start using. The firmware, KiCad files, 3D holder and even Grafana dashboard files can be found on GitHub.

Such air quality sensor platforms have been getting more and more popular, and hackers have been paying attention. Having a full open-source package like this at our disposal is amazing. If you’re looking for a cheaper “baby’s first air quality sensor”, drop by your local IKEA — there’s a way less featureful but quite cheap sensor that you can equip with an ESP8266, perhaps, even on a custom PCB.

A dark grey couch with a white pegboard on a drawer slide protruding from its arm. The pegboard has a magazine holder, pen holder, and several other miscellaneous bins holding odds and ends on it.

Sofa Armrest Is A Nifty Storage Spot

If you’re like us, you’re always in need of a little more space to store things. [Javier Guerrero] realized his sofa wasn’t living up to its full storage potential and designed this sofa armrest storage.

[Guerrero]’s sofa arms were hiding 80 liters of space, so he really wanted to do something with it. After disassembling them, he found his original plan of just cutting them up wouldn’t work due to the minimal structure inside. Not to be discouraged, he drew up some plans and built replicas from 15 mm plywood.

For one armrest, he made a single giant box that opens from the top where he can store a couple of folding chairs. On the other side, he made a shorter top-opening bin for charging phones and storing the remote. Underneath that is a large pull out drawer with a pegboard for organizational bliss.

The arms were upholstered using the fabric from the original arms plus a little extra from another slip cover. Separate arm modules and easily obtainable matching fabric aren’t a given for every couch, but we expect that almost any sofa with arms could benefit from this hack given a little ingenuity.

If you’re looking for more storage hacks, checkout this Modular Storage from Old Filament Spools, the Last Component Storage System You’d Ever Need, or the ever popular Gridfinity.

Pi Pico Calculates Water Usage

Modern WiFi-enabled microcontrollers have made it affordable and easy to monitor everything from local weather information to electricity usage with typically no more than a few dollars worth of hardware and a little bit of programming knowledge. Monitoring one’s own utility data can be a little bit more difficult without interfering with the metering equipment, but we have seen some clever ways of doing this over the years. The latest is this water meter monitoring device based on a Raspberry Pi Pico.

The clever thing here isn’t so much that it’s based on the tiniest of Raspberry Pis, but how it keeps track of the somewhat obscured water flow information coming from the meter. Using a magnetometer placed close to the meter, the device can sense the magnetic field created as water flows through the meter’s internal sensors. The magnetic field changes in a non-obvious way as water flows through it, so the program has to watch for specific peaks in the magnetic field. Each of these specific waveforms the magnetometer detects counts to 0.0657 liters of water, which is accurate for most purposes.

For interfacing with a utility meter, this is one of the more efficient and elegant hacks we’ve seen in a while. There have, of course, been other attempts to literally read the meter using web cams and computer vision software, but the configuration for these builds is much more complex than something like this. You can interface with plenty of utility meters other than water meters, too, regardless of age.

Automating The Most Analog Of HVAC Equipment

Burning wood, while not a perfect heating solution, has a number of advantages over more modern heating appliances. It’s a renewable resource, doesn’t add carbon to the atmosphere over geologic time scales like fossil fuels do, can be harvested locally using simple tools, and it doesn’t require any modern infrastructure to support it. That being said, wood stoves aren’t something that are very high-tech and don’t lend themselves particularly well to automation as a result, at least with the exception of this wood stove from [jotulf45v2].

While this doesn’t automate the loading or direct control of a modern pellet stove, it does help [jotulf45v2] know when the best times are for loading more wood into the stove and helps keep the stove in the right temperature range to avoid the dangerous formation of creosote on the inside of his chimney caused by low temperature burns. Two temperature sensors, one on the stovetop and the other on the stove pipe, monitor the stove exhaust temperature. They feed data to a Node-RED system running on a Raspberry Pi which automatically notifies the user by text message when certain stove temperatures are reached.

For anyone heating with wood, tools like this are indispensable to help avoid spending an otherwise unnecessary amount of time getting a fire up to temperature quickly without over-firing the stove. Modern pellet stoves have some more modern conveniences like this built in, but many of the perks of using cord wood are lost with these devices. There are plenty of other ways to heat with wood too; take a look at this custom wood boiler which serves as a hot water heater.

A weather station with an E-ink display

Low Power Challenge: Weather Station Runs For Months Thanks To E-Ink Display

Having a device in your living room that shows weather information is convenient, and building one of those is a great project if you enjoy tinkering with microcontrollers and environmental sensors. It’s also a great way to learn about low-power design, as [x-labz] demonstrated with their e-ink weather station which works for no less than 60 days on a single battery charge. It has a clear display that shows the local temperature and humidity, as well as the weather forecast for the day.

The display is a 4.2″ e-paper module with a resolution of 400 x 300 pixels. It uses just 26 mW of power for a few seconds while it updates its image, and basically zero watts when showing a static picture. It’s driven by a tiny ESP32C3 processor board, which downloads the weather forecast from weatherapi.com every two hours. The indoor climate is measured by an SHT-21 temperature and humidity sensor mounted behind the display, while the outdoor data is gathered by a WiFi-connected sensor installed on [x-labz]’s balcony.

The inside of an e-ink powered weather stationThe key to achieving low power usage here is to keep the ESP32 in sleep mode as much as possible. The CPU briefly wakes up once every five minutes to read out the indoor sensor and once every fifteen minutes to gather data from outside, using the relatively power-hungry WiFi module.

To further reduce power consumption, the CPU core is driven at the lowest possible clock speed at all times: 10 MHz when reading the indoor sensor, and 80 MHz when using the WiFi connection. All of this helps ensure that just one 600 mAh lithium battery can keep everything running for those 60 days.

E-ink displays are perfect for text and simple graphics that don’t change too often, which is why they’re very popular in weather stations. With a bit of tweaking though, LCDs can also be optimized for low power.

A black chandelier that looks somewhat like a fern frond. It has four lights arranged roughly in a circle around the curly end and two clustered near the tail. It is mounted on a dark wood panel ceiling.

Put A Constellation In Your Dining Room

We love lamps here at Hackaday, especially if they imitate natural light sources. [Scott McIndoe] used his love of lamps to fashion a chandelier replicating his favorite constellation, the Southern Cross.

Starting with the Southern Cross’s four major stars and the pointers of Alpha and Beta Centauri, [McIndoe] sketched out a breaking wave form between the six stars to form the spine of this light source. By using smart bulbs for each of the six star positions, he was able to set a scene that replicates the color and relative brightness of each star for that extra astronomical touch.

The top and bottom of the chandelier is laser cut from 3 mm plywood and fitted together using glue and finger joints while the sides are a wood veneer. The entire piece was sanded and coated with a bit of filler before painting. Mounting is accomplished using three eye hooks mounted on the top side of the chandelier.

If you want more celestial lamps, check out [McIndoe]’s previously-featured analemma chandelier or this lithophane moon lamp.