You don’t have to be a Snow Crash or Tron fan to be familiar with the 3D craze that characterized the rise of the Internet and the World Wide Web in particular. From phrases like ‘surfing the information highway’ to sectioning websites as if to represent 3D real-life equivalents or sorting them by virtual streets like Geocities did, there has always been a strong push to make the Internet a more three-dimensional experience.
This is perhaps not so strange considering that we humans are ourselves 3D beings used to interacting in a 3D world. Surely we could make this fancy new ‘Internet’ technology do something more futuristic than connect us to text-based BBSes and serve HTML pages with heavily dithered images?
Enter VRML, the Virtual Reality Modelling Language, whose 3D worlds would surely herald the arrival of a new Internet era. Though neither VRML nor its successor X3D became a hit, they did leave their marks and are arguably the reason why we have technologies like WebGL today.
Feeling nostalgic? Weren’t around in the 90s but wonder what it was like? ProtoWeb has you covered! Over on his YouTube channel [RetroTech Chris] shows you how to browse the web like it’s 1995.
The service that [RetroTech Chris] introduces is on the web over here: protoweb.org. The way it works is that you configure your browser to use the service’s proxy server, then the service will be able to intercept your browsing activity and serve you old content from its cache. Also, for some supported sites, you will see present-day content but presented in the format you would have seen in the 90s. Once you have configured your browser to use the ProtoWeb proxy you can navigate to http://www.inode.com/ where you will find a directory listing of sites which have been archived or emulated within the service.
In his video [RetroTech Chris] actually demos some of the old web browsers running on old hardware, which is a very good recreation of what things were like. If you want the most realistic experience you can even configure ProtoWeb to slow down your network connection to the speed of a 56k dial-up modem. There are some things from the 90s that we miss, but waiting for websites to load isn’t one of them!
We had a look in our own archive to see how far back we here at Hackaday could go, and we found our first post, from September 2004: Radioshack Phone Dialer – Red Box. A red box! Spicy.
You might think that a nuclear explosion is not something you need a detector for, but clearly not everyone agrees. [Bigcrimping] has not only built one, the BhangmeterV2, but he has its output publicly posted at hasanukegoneoff.com, in case you can’t go through your day without checking if someone has nuked Wiltshire.
The Bhangmeter is based on an off-the-shelf “nuclear event detector”, the HSN-1000L by Power Device Corporation.
The HSN 1000 Nuclear Event Detector at the heart of the build. We didn’t know this thing existed, never mind that it was still available.
Interfacing to the HSN-1000L is very easy: you give it power, and it gives you a pin that stays HIGH unless it detects the characteristic gamma ray pulse of a nuclear event. The gamma ray pulse occurs at the beginning of a “nuclear event” precedes the EMP by some microseconds, and the blast wave by perhaps many seconds, so the HSN-1000 series seems be aimed at triggering an automatic shutdown that might help preserve electronics in the event of a nuclear exchange.
[Bigcrimping] has wired the HSN-1000L to a Raspberry Pi Pico 2 W to create the BhangmeterV2. In the event of a nuclear explosion, it will log the time the nuclear event detector’s pin goes low, and the JSON log is pushed to the cloud, hopefully to a remote server that won’t be vaporized or bricked-by-EMP along with the BhangmeterV2. Since it is only detecting the gamma ray pulse, the BhangmeterV2 is only sensitive to nuclear events within line-of-sight, which is really not where you want to be relative to a nuclear event. Perhaps V3 will include other detection methods– maybe even a 3D-printed neutrino detector?
It’s a sad comment on the modern world that this hack feels both cold-war vintage and relevant again today. Thanks to [Tom] for the tip; if you have any projects you want to share, we’d love to hear from you whether they’d help us survive nuclear war or not.
It does, more-or-less, what it says as on the tin: it is an HTTP proxy that retrieves pages from the Internet Archive’s Wayback Machine, or the Oocities archive of old Geocities sites. (Remember Geocities?) It is meant to sit on a Raspberry Pi or similar SBC between you and the modern internet. A line in a config file lets you specify the exact date. We found this via YouTube in a video by [The Science Elf] (embedded below, for those of you who don’t despise YouTube) in which he attaches a small screen and dial to his Pi to create what he calls the “Internet Time Machine” using the Wayback Proxy. (Sadly [The Science Elf] did not see fit to share his work, but it would not be difficult to recreate the python script that edits config.json.)
What’s the point? Well, if you have a retro-computer from the late 90s or early 2000s, you’re missing out a key part of the vintage experience without access to the vintage internet. This was the era when desktops were being advertised as made to get you “Online”. Using Wayback Proxy lets you relive those halcyon days– or live them for the first time, for the younger set. At least relive those of which parts of the old internet which could be Archived, which sadly isn’t everything. Still, for a nostalgia trip, or a living history exhibit to show the kids? It sounds delightful.
It’s hard to imagine now, but in the mid-1980s, the Internet came close to collapsing due to the number of users congesting its networks. Computers would request packets as quickly as they could, and when a router failed to process a packet in time, the transmitting computer would immediately request it again. This tended to result in an unintentional denial-of-service, and was degrading performance significantly. [Navek]’s recent video goes over TCP congestion control, the solution to this problem which allows our much larger modern internet to work.
In a 1987 paper, Van Jacobson described a method to restrain congestion: in a TCP connection, each side of the exchange estimates how much data it can have in transit (sent, but not yet acknowledged) at any given time. The sender and receiver exchange their estimates, and use the smaller estimate as the congestion window. Every time a packet is successfully delivered across the connection, the size of the window doubles.
Once packets start dropping, the sender and receiver divide the size of the window, then slowly and linearly ramp up the size of the window until it again starts dropping packets. This is called additive increase/multiplicative decrease, and the overall result is that the size of the window hovers somewhere around the limit. Any time congestion starts to occur, the computers back off. One way to visualize this is to look at a graph of download speed: the process of periodically hitting and cutting back from the congestion limit tends to create a sawtooth wave.
[Navek] notes that this algorithm has rather harsh behavior, and that there are new algorithms that both recover faster from hitting the congestion limit and take longer to reach it. The overall concept, though, remains in widespread use.
The seeds of the Internet were first sown in the late 1960s, with computers laced together in continent-spanning networks to aid in national defence. However, it was in the late 1990s that the end-user explosion took place, as everyday people flocked online in droves.
Many astute individuals saw the potential at the time, and rushed to establish their own ISPs to capitalize on the burgeoning market. Amongst them was a famous figure of some repute. David Bowie might have been best known for his cast of rock-and-roll characters and number one singles, but he was also an internet entrepreneur who got in on the ground floor—with BowieNet.
Over the history of the Web, we have seen several major shifts in browsing software. If you’re old enough to have used NCSA Mosaic or any of the other early browsers, you probably welcomed the arrival of Netscape Navigator, and rued its decline in the face of Internet Explorer. As Mozilla and then Firefox rose from Netscape’s corpse the domination by Microsoft seemed inevitable, but then along came Safari and then Chrome.
For a glorious while there was genuine competition between browser heavyweights, but over the last decade we’ve arrived at a point where Chrome and its associated Google domination is the only game in town. Other players are small, and the people behind Firefox seem hell-bent on fleeing to the Dark Side, so where should we turn? Is there a privacy-centric open source browser that follows web standards and doesn’t come with any unfortunate baggage in the room? It’s time to find out. Continue reading “Which Browser Should I Use In 2025?”→