Closing The Loop On An Artificial Pancreas

Life as a parent is never easy, but when you’ve got a kid with Type 1 diabetes it’s a little harder. Sometimes it feels like a full-time job in itself; there’s never a break. With carb counts and insulin ratios that change throughout the day, every meal is a medical procedure. A romp in the snow or a long bike ride can send her blood glucose plummeting. The overnights are the worst, though, because you never know if you overestimated the number of carbs at dinner and gave her too much insulin. Low blood glucose is easily treated with a few sips of juice, but if it goes unnoticed in the middle of the night, it could be fatal. That’s why parents of diabetics are always a little glassy eyed — we rarely sleep.

Why is all this necessary? It’s because Type 1 diabetes (T1D) is an autoimmune disease that attacks the insulin-producing beta cells in the pancreas. Once those cells are dead, insulin is no longer produced, and without insulin the rest of the cells in the body can’t take in the glucose that they need to live. Diabetics have to inject just the right amount of insulin at just the right time to coincide with the blood glucose spike that occurs after meals. Knowing how much to give and when is why we say we have to “learn to think like a pancreas.”

1-1-2-4_ping
Animas Ping insulin pump, partial teardown. The cylinder on the bottom is the battery, the motor and syringe compartment are on top. Source: Animas

Things are better than they used to be, for sure. Insulin pumps have been a game changer for T1Ds. An insulin pump is just a tiny syringe pump. A small motor moves the plunger on a disposable syringe filled with a few days worth of insulin. The hormone is delivered through a small catheter placed under the skin every few days — painful, but better than a needle stick with every meal and snack.  A computer keeps track of everything and provides safety against overdosing on insulin, so it’s terribly convenient, but we still need to “think like a pancreas” and calculate the amount to deliver.

Even with its shortcomings, my daughter’s pump has been a blessing, and I’ll do whatever it takes to keep her in the latest gear. Pumps generally cost about $5000 or so, and need to be replaced every three years. While I’m not looking forward to paying the bill when her current pump gives up the ghost, I am certainly keen to do a teardown on the old one. I suspect it’s dead simple in there — a tiny gear motor, some kind of limit switches, and a main board. It’ll be painful to see how little my money buys, but it’ll be cool to play around with it.

Continue reading “Closing The Loop On An Artificial Pancreas”

This DIY Wearable Assist Goes Beyond Traditional Therapy

Bodo Hoenen and his family had an incredible scare. His daughter, Lorelei, suddenly became ill and quickly went from a happy and healthy girl to one fighting just to breathe and unable to move her own body. The culprit was elevated brain and spinal pressure due to a condition called AFM. This is a rare polio-like condition which is very serious, often fatal. Fortunately, Lorelei is doing much better. But this health crisis resulted in nearly complete paralysis of her left upper arm.

Taking an active role in the health of your child is instinctual with parents. Bodo’s family worked with health professionals to develop therapies to help rehabilitate Lorelei’s arm. But researching the problem showed that success in this area is very rare. So like any good hacker he set out to see if they could go beyond the traditional to build something to increase Lorelei’s odds.

What resulted is a wearable prosthesis which assists elbow movement by detecting the weak signals from her bicep and tricep to control an actuator which moves her arm. Help came in from all over the world during the prototyping process and the project, which was the topic of Bodo Hoenen’s talk at the Hackaday SuperConference, is still ongoing. Check that out below and the join us after the break for more details.

Continue reading “This DIY Wearable Assist Goes Beyond Traditional Therapy”

EMG Tutorial Lets You Listen To Your Muscles

What with wearable tech, haptic feedback, implantable devices, and prosthetic limbs, the boundary between man and machine is getting harder and harder to discern. If you’re going to hack in this space, you’re going to need to know a little about electromyography, or the technique of sensing the electrical signals which make muscles fire. This handy tutorial on using an Arduino to capture EMG signals might be just the thing.

In an article written mainly as a tutorial to other physiatrists, [Dr. George Marzloff] covers some ground that will seem very basic to the seasoned hacker, but there are still valuable tidbits there. His tutorial build centers around a MyoWare Muscle Sensor and an Arduino Uno. The muscle sensor has snap connectors for three foam electrodes of the type used for electrocardiography, and outputs a rectified and integrated waveform that represents the envelope of the electrical signal traveling to a muscle. [Dr. Marzloff]’s simple sketch just reads the analog output of the sensor and lights an LED if it detects a muscle contraction, but the sky’s the limit once you have the basic EMG interface. Prosthetic limbs, wearable devices, diagnostic tools, virtual reality — the possibilities are endless.

We’ve seen a few EMG interfaces before, mainly of the homebrew type like this audio recorder recruited for EMG measurements. And be sure to check out [Bil Herd]’s in-depth discussion of digging EMG signals out of the noise.

Simple ECG Proves You Aren’t Heartless After All

We don’t think of the human body as a piece of electronics, but a surprising amount of our bodies work on electricity. The heart is certainly one of these. When you think about it, it is pretty amazing. A pump the size of your fist that has an expected service life of nearly 100 years.

All that electrical activity is something you can monitor and–if you know what to look for–irregular patterns can tell you if everything is OK in there. [Ohoilett] is a graduate student in the biomedical field and he shares some simple circuits for reading electrocardiogram (ECG) data. You can see a video fo the results, below.

Continue reading “Simple ECG Proves You Aren’t Heartless After All”

Hacker Helps His Mother Lift Her Walker When He’s Not There

[typo]’s mother gets around with a walker. It’s a great assistive device until she has to lift the heavy thing up into her car. Noting that this was a little cruel he did as any hacker would and found a way to automate the process.

The build is pretty cool. She had to give up her passenger seat, but it’s a small price to pay for independence. He removed the door paneling on the passenger side. Then he welded on a few mounting points. Next he had to build the device.

The well-built device has a deceptively simple appearance. The frame is made from CNC milled panels and the ever popular aluminum extrusion. It uses a 12V right angle drive and some belting to lift the chair. There’s no abundance of fancy electronics here. A toggle switch changes the direction of the motor. There are some safety endstops and an e-stop.

Now all she has to do is strap the walker to the door. She picks the direction she wants the lift to go and presses a button. After which she walks the short distance to the driver’s seat, and cruises away.

Hackaday Prize Entry: Tongue Vision

Visually impaired people know something the rest of us often overlooks: we actually don’t see with our eyes, but with our brains. For his Hackaday Prize entry, [Ray Lynch] is building a tongue vision system, that will help blind people to see through one of the human brain’s auxiliary ports: the taste buds.

Continue reading “Hackaday Prize Entry: Tongue Vision”

Smart Sutures

Researchers at Tufts University are experimenting with smart thread sutures that could provide electronic feedback to recovering patients. The paper, entitled “A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnosis”, is fairly academic, but does describe how threads can work as pH sensors, strain gauges, blood sugar monitors, temperature monitors, and more.

Conductive thread is nothing new but usually thought of as part of a smart garment. In this case, the threads close up wounds and are thus directly in the patient’s body. In many cases, the threads talked to an XBee LilyPad or a Bluetooth Low Energy module so that an ordinary cell phone can collect the data.

Continue reading “Smart Sutures”