Fully 3D Printed Snow Blower

For anyone living in cooler climates, the annual onslaught of snow means many hours shoveling driveways and sidewalks. After a light snow, shoveling might seem a waste of time, while a snow blower would be overkill. If only there were a happy middle ground that required minimal effort; perhaps an RC snow groomer with a 3D printed snow blower would work.

We featured an earlier version of this project last year. This year’s model features a slipper clutch — combined with a differential from a heavy RC truck — to forestall damage to the attachment if you happen to hit any rocks or ice chunks. The blades are also thicker and lack teeth in this iteration, as they would catch on anything hard and shatter the blade more often than not. Designed by [Spyker Workshop] (aka [The_Great_Moo]) the snow blower attaches to the front of RC snow groomer — which is originally meant to act like a plow. Seeing the snow blower attachment in action, we’re inclined to believe that he may be onto something.

Continue reading “Fully 3D Printed Snow Blower”

Parts Bin Bonanza Leads To Arduino FM Radio

Trolling eBay for parts can be bad for your wallet and your parts bin. Yes, it’s nice to be well stocked, but eventually you get to critical mass and things start to take on a life of their own.

This unconventional Arduino-based FM receiver is the result of one such inventory overflow, and even though it may take the long way around to listening to NPR, [Kevin Darrah]’s build has some great tips in it for other projects. Still in the mess-o-wires phase, the radio is centered around an ATmega328 talking to a TEA5767 FM radio module over I²C. Tuning is accomplished by a 10-turn vernier pot with an analog meter for frequency display. A 15-Watt amp drives a pair of speakers, but [Kevin] ran into some quality control issues with the amp and tuner modules that required a little extra soldering as a workaround. The longish video below offers a complete tutorial on the hardware and software and shows the radio in action.

We like the unconventional UI for this one, but a more traditional tuning method using the same guts is also possible, as this retro-radio refit shows.

Continue reading “Parts Bin Bonanza Leads To Arduino FM Radio”

Getting IEC Standards For Free

The International Electrotechnical Commission (IEC) is an international body that issues standards on a wide range of electronics-related topics. How wide? Their mandate seems to span rules for household product safety to the specification of safety logic assemblies in nuclear power plants. Want to know how to electrically measure sound loudness? Test methods for digital door lock systems? Or maybe you’re interested in safety interlock systems for laser processing machines. There’s an IEC standard for that too.

Unfortunately, this information is kept behind a paywall. OK, it’s a lot more like a pay fortress. They really, really don’t want you accessing their documents without first coughing up. This is a shame.

The IEC doesn’t just make the standards in a vacuum, however. Before the scribes touch their chisels to the stone tablets, there are draft versions of the standards that are open for public comment by those knowledgeable in the field. And by “those knowledgeable”, we mean you, dear hacker. Head on over to the public commenting page, sign up, and you’ve got free access to every document that’s currently up for discussion.

Now, it does look like the IEC doesn’t want you sharing these PDFs around — they watermark them with your username and threaten all sorts of things if you use them for anything other than commenting purposes — so don’t go abusing the system. But on the other hand, if you are a private individual who knows a thing or two about a thing or two, we think you’re entirely right to look over their shoulders. Let us know in the comments if you find any gems.

They’ve even got a weekly update feature (in the registration pages) that’ll keep you up to date. And who knows, maybe your two cents, submitted to your country’s chapter of the IEC, will influence future international standards.

Thanks to [Johann] for the great tip!

Modified Servo Adds Focus Control To Telescope

Scanning the heavens with a telescope is a great way to spend long, clear winter nights, but using a manual telescope can get to be a drag. A motorized mount with altitude and azimuth control is basic equipment for the serious observer, but adding a servo to control the focus of your telescope is one step beyond your average off-the-shelf instrument.

Having already motorized the two axes of the equatorial mount of his modest telescope as a senior project, [Eric Seifert] decided to motorize the focus rack as well. His first inclination was to use a stepper motor like he did on the other two axes, but with a spare high-torque servo at hand, he hacked a quick proof-of-concept. The servo was modified for continuous rotation in the usual way, but with the added twist of replacing the internal potentiometer with an external linear pot. Attached to the focus tube, the linear pot allows [Eric] to control the position and speed of the modified servo. Sounds like controlling the focus will be important to [Eric]’s planned web interface for his scope; we’ll be looking for details on that project soon.

We like the simplicity of this solution, and it’s a trick worth keeping in mind for other projects.  But if fancy steppers and servos aren’t your thing, fear not — astrophotography is as easy as slapping a couple of boards together with a hinge.

Continue reading “Modified Servo Adds Focus Control To Telescope”

PURE Modules Aim To Make Prototyping Easier

[Sashi]’s PURE modules system wants your next wireless microcontroller and sensor module project to be put together using card-edge connectors. But it’s a lot deeper than that — PURE is an entire wireless gadget development ecosystem. Striking a balance between completeness and modularity is very difficult; a wire can carry any imaginable electronic signal, but just handing someone a pile of wires presents them a steep learning curve. PURE is at the other end of the spectrum: everything is specified.

So far, two microcontroller options are available in the system, the nRF52 series and TI’s CC2650. Both of these run the Contiki OS, so it doesn’t matter which of these you choose. Wired data is all transmitted over I2C and connects up via the previously-mentioned card-edge connectors. On the wireless side, data transport is handled through an MQTT broker, using the MQTT-sn variant which is better suited to small radio devices. At the protocol layer everything uses Protocol Buffers, Google’s newest idea for adding some structure to the data.

Continue reading “PURE Modules Aim To Make Prototyping Easier”

Make Mulled Wine With A Processor Heatsink!

Now, over the holiday season there seems to be a predilection towards making merry and bright. As many an engineer and otherwise are sure to note, fine alcohols will facilitate this process. One such warm holiday beverage is mulled wine; there are many traditions on how to make it, but a singular approach to preparing the beverage would be to re-purpose an old PC and a CPU liquid cooling unit into a mulled wine heating station.

Four years ago, [Adam] found himself staring at a pile of mostly obsolete PCs in his IT office and pondering how they could be better used. He selected one that used a power-hungry Pentium 4 — for its high heat output — strapped a liquid cooling block to the CPU and pumped it full of the holiday drink. It takes a few hours to heat three liters of wine up to an ideal 60 Celsius, but that’s just in time for lunch! The Christmastime aroma wafting through the office is nice too.

Continue reading “Make Mulled Wine With A Processor Heatsink!”

Simon Says Smile, Human!

The bad news is that when our robot overlords come to oppress us, they’ll be able to tell how well they’re doing just by reading our facial expressions. The good news? Silly computer-vision-enhanced party games!

[Ricardo] wrote up a quickie demonstration, mostly powered by OpenCV and Microsoft’s Emotion API, that scores your ability to mimic emoticon faces. So when you get shown a devil-with-devilish-grin image, you’re supposed to make the same face convincingly enough to fool a neural network classifier. And hilarity ensues!

Continue reading “Simon Says Smile, Human!”