Making A Metal Hand Doorknob

Regular doorknobs are widely reviled for their bare simplicity, but by and large society has so many other problems that it never really comes up in day to day conversation. Fear not, however, for [Matthew] has created something altogether more special: a doorknob in the shape of his own outstretched hand.

The build was inspired by a similar doorknob at the WNDR museum in Chicago, and its one you can recreate yourself, too. It’s achieved through a multi-stage mold making process. [Matthew]’s first step was to make a flexible mold of his hand using Perfect Mold alginate material to do so.

Once solidified, [Matthew’s] hand was removed and the mold filled with wax. The wax duplicate of [Matthew]’s hand was then used to create an investment plaster mold for casting metal. Vents were added in the end of each fingertip in the mold to allow molten metal to effectively fill the entire cavity.

Once the investment mold was solid and dry, the wax was melted out and it was ready for casting. A propane furnace was used to melt the casting metal and fill the mold using a simple gravity casting method. [Matthew] ended up making two hands, one in aluminium and one in copper. Some cleanup with grinders and a wire wheel, and a replica of [Matthew]’s hand was in his hands!

The finished piece looks great attached to a door knob, and we’re sure it’s quite satisfying shaking hands with your hefty metal self every time you open the door. It bears noting that the same techniques can be used with 3D printing, too! If you pull off your own great home casting project, be sure to drop us a line. Video after the break.

Continue reading “Making A Metal Hand Doorknob”

The Most Important Device In The Universe on display at Modern Props

The Most Important Device In The Universe Is Powered By A 555 Timer

The Hackaday comments section has become infamous for a recurring theme that goes something like “I don’t know why they used an Arduino, they could have done it with a 555 timer!” If you’ve ever thought the same way, then this post is for you!

What is The Most Important Device In The Universe, then? It’s the Modern Props #195-290-1, a movie prop originally built in the 1970’s. It’s a product of the creative mind of [John Zabrucky] who founded Modern Props in 1977 to serve Sci-Fi television and movie productions that wanted to invent the future with their props. Known for their high quality and impeccable craftsmanship, Modern Props’ products were in demand until the day they closed the doors so that [John] could retire.

This particular piece is called The Most Important Device In The Universe due to its ubiquity in modern productions that we’ve all heard of: several Star Trek franchises, The Last Starfighter, Knight Rider, Airplane II, Austin Powers, and countless others. The next time you sit down to watch a Sci-Fi show, see if you can spot it! Be sure to check the video below the break to see several examples.

Nobody is sure what The Most Important Device does, aside from the fact that it has red lights that go back and forth. What we do know, thanks to a comment by the man who installed the electronics, [Gene Turnbow], is how it’s powered. [Gene] explained that 45w NPN power transistors drive the neon tubes through step up transformers. The transistors themselves are connected to a 74C4514 demultiplexer, which is itself driven by a 7493 binary counter. What’s the 7493 driven by? You guessed it: the venerable 555 Timer. And so it is that the 555 timer runs The Most Important Device In The Universe.

We did think that [Gene]’s final comment was rather indicative of how much things have changed since the prop was originally built. After explaining the device, he says “These days we would just use an Arduino to do the same job.” Indeed.

Don’t worry, 555 lovers. We’ve got you covered with this Vacuum Tube 555, and and the Trollduino, a 555 on an Arduino Shield. Thanks [Matt K] for the great tip. Don’t forget to submit your favorite hacks to our Tip Line!

Continue reading “The Most Important Device In The Universe Is Powered By A 555 Timer”

Making Tea Pots With Antique Machinery

We in the West take quite a lot for granted. We’re used to certain standards of care in our homes and our places of work, so much so that we rarely even take time to notice it. Workplace accidents are a big deal, and failing to report can lead to you finding yourself being shown the door. So it’s a little sobering to see how things get made in countries with a less stringent approach in certain areas of basic health and safety.

With the urge to drive prices to the lowest possible, low-tech items such as clothing and housewares tend not to be made in highly sophisticated, automated factories, but more likely in smaller facilities employing more labour, which favours countries where such labour is cheaper and more available. The video we’re highlighting here shows a small factory in what is likely Pakistan (but equally could be a few other places, we’re only guessing) which would seem fairly typical for the level of sophistication required to make enameled teapots.

The video shows the production process, starting from sheet steel cut by hand with shears, which is trued before being stamped into a shallow dish. These first two machines are driven by exposed belts, which is particularly risky, given the style of free-flowing fabric clothes several of the workers wear. In the background you can see electrical wiring just slung around, hanging off nails. The whole building is the same, improvised machines with no protective features, managed by skilled manual workers dedicated to their allocated task, all working in perfect unison. It’s lovely to watch, but also saddening at the same time, as you know those guys are right in the middle of a thousand potential hazards, and only their skill and dexterity is stopping something bad happening. The machines themselves are heavily worn all over the place, but clearly hacked by someone there knows enough to just keep them ticking over. Just checkout the deep wear in the tool rest at [4:20] in the video!

Continue reading “Making Tea Pots With Antique Machinery”

Rescuing A Wacom Digitizer From A Broken Lenovo Yoga Book

The Lenovo Yoga Book is a interesting thing, featuring a touch-surface keyboard that also doubles as a Wacom tablet. [TinLethax] sadly broke the glass of this keyboard when trying to replace a battery in their Yoga Book, but realised the Wacom digitizer was still intact. Thus began a project to salvage this part and repurpose it for the future.

The first step was to reverse engineer the hardware; as it turns out, the digitizer pad connects to a special Wacom W9013 chip which holds the company’s secret sauce (secret smoke?). As the GitHub page for [TinLethax]’s WacomRipoff driver explains, however, the chip communicates over I2C. Thus, it was a simple enough job to hook up a microcontroller, in this case an STM32 part, and then spit out USB HID data to a host.

It hasn’t all been smooth sailing, and it’s not 100% feature complete, but [TinLethax] was able to get the digitizer working as a USB HID input device. It appears the buttons and pressure sensitivity are functional, too.

If you’ve got a disused or defunct Yoga Book lying around, you might just consider the same mods yourself. We’ve seen some other great hacks in this space, too. Video after the break.

Continue reading “Rescuing A Wacom Digitizer From A Broken Lenovo Yoga Book”

An Entirely Frivolous Way To Measure Data

[lexie] is a librarian, and librarians live in the real world. They’re not concerned with vague digital notions about the size of data, but practical notions of space. Thus, she created a tool to answer an important question: how long do your shelves need to be if you’re storing all your information on 3.5″ floppy disks?

It’s a great question, and one we find ourselves asking, well, pretty much never. [lexie]’s tool is also built using modern web technologies, and 3.5″ floppy disks were never really used for bulk storage, either. It just makes the whole thing all the more frivolous, and that makes it more fun.

You can key in any quantity from megabytes to exabytes and the tool will spit out the relevant answer in anything from millimeters to miles as appropriate. Despite the graphics on the web page, it does assume rational shelving practices of placing disks along the shelves on their thinner 4 mm edge.

We’d love to see a expanded version that covers other storage methods, like tape, hard drives, or burnt media. It could actually become pretty useful for those building their own mass storage farms at home. With CHIA cryptocurrency that could become more popular, even if it does run us all out of hard drives along the way. Altnernatively, you might consider hooking up a floppy controller for your Raspberry Pi.

 

Building A Custom Linux Single Board Computer Just To Play Spotify

If you want to hook up an existing stereo or amplifier to Spotify, there’s a fair few options on the market. You can even just order a Raspberry Pi and be done with it. [Evan Hailey] went his own way, however, and built his own Spotify Box from scratch.

[Evan] even made this tidy wooden enclosure, learning yet more along the way!
Housed inside a tidy little wooden enclosure of his own creation, the Spotify Box can turn any amplifier into a remote-controlled Spotify player via Spotify Connect. Pick the songs on your smartphone, and they’ll play from the Spotify Box as simple as that.

The project is based on the Allwinner V3S, a system-on-chip with a 1.2GHz ARM-Cortex-A7 core, 64MB of DDR2 RAM, and an Ethernet transceiver for good measure. There’s also a high-quality audio codec built in, making it perfect for this application. It’s thrown onto a four-layer PCB of [Evan’s] own design, and paired with a Wi-Fi and BlueTooth transceiver, RJ-45 and RCA jacks, a push-button and some LEDs. There’s also an SD card for storage.

With a custom Linux install brewed up using Buildroot, [Evan] was able to get a barebones system running Spotifyd while communicating with the network. With that done, it was as simple as hooking up the Spotify Box to an amp and grooving out to some tunes.

Along the way, [Evan] learned all about compiling drivers and working with embedded Linux, as well as how to take a bare SoC and build it into a fully-functional single-board computer. When someone else says they “made” a Spotify player, he presumably gets to clear his throat.

If you fancy retro computers, consider interfacing Spotify with your classic Mac instead!

[Thanks to Jay Carlson for the tip!]

A man watching money being shredded in a picture frame

Banksy-Like Stock Tracker Shreds Your Money When The Market’s Down

For anyone playing the stock market, and perhaps even more so for those investing in cryptocurrencies, watching the value of your portfolio go up and down can be a stressful experience. If you’d like to have a real-time display of your investments that adds even more stress, [Luis Marx] has got you covered. His latest project is a plexiglass case (video in German) that fills up with banknotes when your portfolio is up, and shreds those same notes when it’s down.

Inspired by an infamous Banksy artwork, [Luis] began by building a wood-and-plexiglass display case suitable for hanging on the wall in his office. He then installed a small paper shredder, modified with a servo so that it could be operated by an Arduino. Unable to find an off-the-shelf banknote dispenser, he designed and 3D-printed one, consisting of a spring-loaded tray and a motor-driven wheel.

A plastic box that dispenses a banknote

The project also includes a Raspberry Pi, programmed to fetch market data from online sources and calculate the net profit or loss of [Luis]’s portfolio. The resulting system is a rather disturbing visualization of the ups and downs of the market: having to sweep strips of green paper off your floor adds insult to the pain of losing money.

If you want a less painful way to keep track of your investments, try this Rocketship. For those interested in  traditional stock tickers, this ESP32 based one might be more to your liking.

Continue reading “Banksy-Like Stock Tracker Shreds Your Money When The Market’s Down”