High-Resolution MIDI Controller

For an older standard, MIDI has remarkable staying power in the music industry. It remains the de facto digital interface between computers and instruments thanks to its open nature, but its age does show a little bit. Sending control change (CC) messages, for example, was originally designed to fit within seven bits, which doesn’t give particularly fine resolution compared to more capable modern computers. To work around that, a fourteen-bit message is possible, doubling the resolution, and this MIDI interface uses this larger amount of data to send these high-resolution CC messages.

The 14-bit messages are actually fairly well documented but are a bit obscure, with very limited hardware support. To that end, [Gero] set about building this control interface to solve that problem. It’s made up of only eight knobs, each of which is mapped one-to-one to a parameter on the computer, allowing the interface to feel more like an analog device where the knob corresponds directly to a change in an aspect of the sound. The platform is built around a Teensy 4.0 and some multiplexers to handle all of the knobs, with the open source software available for anyone to use to modify their actions. [Gero] was aiming for high fidelity for all aspects of this controller, not just the improved digital resolution, and made a number of other improvements to it as well like re-greasing the potentiometer knobs and a custom 3D printed enclosure.

All of the software is available for use, as well as the files to print the case. [Gero] is also working on a PCB to make the construction of the device a little more streamlined, but for now, it requires a bit of soldering off-the-shelf parts together. The MIDI standard is open as well, which allows for a lot of innovation in the creation of musical instruments from unique hardware. This project builds a MIDI synthesizer with parts from a Sega Genesis.

Impressively Responsive Air Drums Built Using The Raspberry Pi Pico

Drum kits are excellent fun and a terrific way to learn a sense of rhythm. They’re also huge and unwieldy. In contrast, air drums can be altogether more compact, if lacking the same impact as the real thing. In any case, students [Ang], [Devin] and [Kaiyuan] decided to build a set of air drums themselves for their ECE 4760 microcontroller class at Cornell.

As per the current crop of ECE4760 projects, the build relies on the Raspberry Pi Pico microcontroller as the brains of the operation. The Pico is charged with reading the output of MPU6050 inertial measurement units mounted to a pair of drum sticks. The kick pedal itself simply uses a button instead.

Where the project gets really interesting, though, is in the sound synthesis. The build doesn’t simply play different pre-recorded samples for different drums. Instead, it uses the Karplus-Strong Drum Synthesis function combined with a wavetable to generate different sounds.

In the demo video, we get to hear the air drums in action, complete with a Stylophone playing melody. Unlike some toy versions that trigger seemingly at random with no rhythm, these air drums are remarkably responsive and sound great. They could be a great performance instrument if designed for the purpose.

We’ve seen similar builds before, too.

Continue reading “Impressively Responsive Air Drums Built Using The Raspberry Pi Pico”

A red circuit board with four wires running from an IMU to a Pi Pico W. This is all attached to a clear plastic baton.

An Electronic Orchestra Baton

The conductor of an orchestra may look unassuming on the street, but once they step onto their podium, they are all powerful. If you’ve ever wanted to go mad with power in the comfort of your own home, try this electronic orchestra baton by [Larry Lu] and [Kathryn Zhang].

The wireless baton “peripheral” part of the system uses a Pico W and an IMU to detect the speed of conducting a 4/4 measure. That information is then transmitted to the “central” Pico W access point which plays a .wav at the speed corresponding to the conductor’s specified beats per minute (BPM). Setting the baton down will pause the visualizer and audio playback.

The “central” Pico W uses direct memory access (DMA) and SPI communication to control the audio output and VGA visualization. Since most .wav files have a sample rate of 44.1 kHz, this gave the students a reference to increase or decrease the DMA audio channel timer to control the playback.

Want some more musical hacks? Checkout this auto-glockenspiel or how the original iPod was hacked.

Continue reading “An Electronic Orchestra Baton”

Raspberry Pi Pico Becomes Emotionally-Aware Music Visualizer

Back in the late 1990s and early 2000s, the nascent world of digital music was incredibly exciting. We all cultivated huge MP3 collections and spent hours staring at the best visualizers Winamp and Windows Media Player had to offer. [Rafael] and [Eric] decided to bring back those glory days with their music visualizer that runs on the Raspberry Pi Pico.

The design is quite interesting, going beyond the usual simplistic display of waveforms and spectrograms. Instead, the Pi Pico uses a Fast Fourier Transform analysis to determine the frequencies of the music, ideally then to determine the key, and thus the mood, of the tune.  Then, the visualizer uses different colors to represent those moods, such as green for happy music in a major key, or deeper blues for a sad piece in a minor key. The output of the visualizer is via Bruce Land’s 8-bit color VGA library, which allows the Pi Pico to drive a monitor directly.

Whether the visualizer really gets the music is up for debate.  The visuals simply don’t look sad and depressing enough when listening to Hallelujah, but maybe that’s just the lack of Jeff Buckley’s vocals in the instrumental. Furthermore, getting an FFT analysis to pull out reliable musical information from an audio recording is finicky to say the least. In any case, the blocky and colorful animations are nice to watch nonetheless. They’d make an excellent basis for visuals at your next underground chiptune show, that much is for certain. Video after the break.

Continue reading “Raspberry Pi Pico Becomes Emotionally-Aware Music Visualizer”

Audio Synthesizer Hooked Up With ChatGPT Interface

ChatGPT is being asked to handle all kinds of weird tasks, from determining whether written text was created by an AI, to answering homework questions, and much more. It’s good at some of these tasks, and absolutely incapable of others. [Filipe dos Santos Branco] and [Edward Gu] had an out of the box idea, though. What if ChatGPT could do something musical?

They built a system that, at the press of a button, would query ChatGPT for a 10-note melody in a given musical key. Once the note sequence is generated by the large language model, it’s played out by a PWM-based synthesizer running on a Raspberry Pi Pico.

Ultimately, ChatGPT is no musical genius. It’s simply picking a bunch of notes from a list that are known to work together melodically; that’s the whole point of musical keys. It would have been wild if it generated some riffs on the level of Stairway to Heaven or Spontaneous Devotion, but that might be asking for too much.

Here’s the question, though. If you trained a large language model, but got it to digest sheet music instead of written texts… could it learn to write music in various genres and styles? If someone isn’t working on that already, there’s surely an entire PhD you could get out of that idea alone. We should talk!

In any case, it’s one of the more creative projects from the ever-popular ECE 4760 class at Cornell. We’ve featured a bunch of projects from the class over the years, and noted how the course now runs on the RP2040. Continue reading “Audio Synthesizer Hooked Up With ChatGPT Interface”

Raspberry Pi Pico Becomes MIDI-Compatible Synth

ECE 4760 is a microcontroller course that runs at Cornell every year, and it gives students a wide remit to pursue various kinds of microcontroller projects. [Pelham Bergesen] took the class and built himself a MIDI-controllable synthesizer out of a Raspberry Pi Pico.

[Pelham] coded a library to parse MIDI messages on the Pico, with the microcontroller’s UART charged with receiving the input data. MIDI is basically just serial at a baud rate of 31.25k, with a set message structure, after all. From there, the Pico takes the note data and plays the relevant frequencies by synthesizing square waves using a PWM output. A second PWM channel can also be blended with the first to generate more complex tones.  The synthesizer is designed to be used with a source of MIDI note data such as a keyboard controller; [Pelham] demonstrates the project in use with a Roland JD-XI. It’s a fairly basic synthesizer, but [Pelham] does a good job of explaining all the steps required to get this far. If you’ve never done an audio or MIDI project before, you might find his guide very helpful for the way it steps through the basics.

[Pelham] didn’t get to implement fancier features like direct digital synthesis (DDS) or analog audio effects before the class closed out. However, that would be an excellent project for anyone else developing their own Pico synthesizer. If you whip up something that sounds good, or even just interesting, be sure to notify us on the tipsline. Video after the break.

Continue reading “Raspberry Pi Pico Becomes MIDI-Compatible Synth”

$30 Guitar Build Shows What You Can Do With Amazon Parts

Most guitarists buy their axes fully assembled from big names like Fender, Gibson, and… maybe Yamaha? Sure. But there are a dedicated set that relish in mixing and matching parts and even building and assembling their own instruments. [Danny Lewis] decided to see what he could do with the cheapest guitar parts from Amazon and a body of his own design, and he put together something pretty passable for just $30.

The wood for the body was cut on a bandsaw, and was essentially free scrap sourced from old furniture. [Danny] went for an unconventional design using a roughly Telecaster outline and large cutouts either side of the bridge. The neck was free, by virtue of being an old Harmony neck sourced off Craigslist. We’d have preferred to see what could be done with a cheap Amazon neck, but it nonetheless fits the vibe of the build.

The guitar then received a $9.99 pickup and controls, an $8.80 solidtail bridge, and $11 tuning machines for the headstock. Strung up, it actually sounds passable. We’d want to throw it on a proper amp and give the whole thing a setup before fully assessing it, but hey, for $30, it’s hard to go wrong.

We do love some hacky guitars around here; we’ve even featured some with surprise effects gear built into the bodies. Video after the break.

Continue reading “$30 Guitar Build Shows What You Can Do With Amazon Parts”