Lessons In Mass Production From An Atari Punk Console

Sometimes the most interesting part of a project isn’t the widget itself, but what it teaches you about the manufacturing process. The story of the manufacturing scale-up of this Atari Punk Console and the lessons learned along the way is a perfect example of this.

Now, don’t get us wrong — we love Atari Punk Consoles. Anything with a couple of 555s that bleeps and bloops is OK in our books. But as [Adam Gulyas] tells the tale, the point of this project was less about the circuit than about the process of making a small batch of something. The APC was low-hanging fruit in that regard, and after a quick round of breadboarding to decide on component values, it was off to production. [Adam] was shooting for 20 units, each in a nice enclosure and a classy package. PCB assemblies were ordered, as were off-the-shelf plastic enclosures, which ended up needing a lot of tweaking. [Adam] designed custom labels for the cases, itself a fraught job; glossy label stock and button bezels apparently don’t mix.

After slogging through the assembly process, boxing the units for shipping was the next job. [Adam] sourced jewelry boxes just a bit bigger than the finished APCs, and rather than settle for tissue paper or packing peanuts, designed an insert to hold the units snugly. That involved a lot of trial and error and a little bit of origami-fu, and the results are pretty nice. His cost per unit came out to just a hair over $20 Canadian, including the packaging, which is actually pretty remarkable for such a short production run.

[Adam] includes a list of improvements for larger-scale runs, including ordering assembled PCBs, outsourcing the printing processes, and getting custom boxes made so no insert is needed. Any way you cut it, this production run came out great and teaches us all some important lessons.

Virginia Cave Is The Largest Musical Instrument In The World

Hit something with a hammer, and it makes a sound. If you’re lucky, it might even make a pleasant sound, which is the idea behind the Great Stalacpipe Organ in Luray Caverns, Virginia. The organ was created in 1954 by [Leland W. Sprinkle], who noticed that some stalactites (the ones that come down from the ceiling of the cave) would make a nice, pure tone when hit.

So, he did what any self-respecting hacker would do: he picked and carved 37 to form a scale and connected them to an electronic keyboard. The resonating stalactites are spread around a 3.5 acre (14,000 square meters) cave, but because it is in a cave, the sound can be heard anywhere from within the cave system, which covers about 64 acres (260,000 square meters). That makes it the largest musical instrument in the world.

We’ll save the pedants the trouble and point out that the name is technically an error — this is not a pipe organ, which relies on air driven into resonant chambers. Instead, it is a lithophone, a percussion instrument that uses rock as the resonator. You can see one of the solenoids that hits the rock to make the sound below.

This is also the sort of environment that gives engineers nightmares: a constant drip-drip-drip of water filled with minerals that love to get left behind when the water evaporates. Fortunately, the Stalacpipe Organ seems to be in good hands: according to an NPR news story about it, the instrument is maintained by lead engineer for the caverns [Larry Moyer] and his two apprentices, [Stephanie Beahm] and [Ben Caton], who are learning the details of maintaining a complex device like this.

Continue reading “Virginia Cave Is The Largest Musical Instrument In The World”

Oh, The Places You’ll Go With Stop Motion Animation

Robots made of broken toy parts, stop-motion animation, and a great song to tie it all together were not on our bingo card for 2023, but the results are perfect. [Mootroidxproductions] recently released the official music video for I Fight Dragons 2019 song “Oh the Places You’ll Go”.

The song was written by lead vocalist [Brian Mazzaferri] with inspiration from the classic Dr. Seuss book. [Brian] wrote it for his newborn daughter, and we’re pretty sure it will hit any parent right in the feels.

[Mootroidxproductions] isn’t a parent themselves, but they expanded on the theme to create a video about sacrificing oneself to save a loved one. With a self deprecating wit, they take us through the process of turning broken Bionicle parts, bits of Gundam, Lego, and, armature wire to make the two robots in the film. He also explains how he converted garbage into sets, greebles, and lighting effects.

The robots had to be designed so that they could fulfill their roles in the film. From the size of their hands down to their individual walking gaits, he thought of everything. His encyclopedic knowledge of Bionicle parts is also on full display as he explains the origin of the major parts used to build “Little Blue” and “Sherman”

Click through the break for both the main video and the behind-the-scenes production.

Continue reading “Oh, The Places You’ll Go With Stop Motion Animation”

Pour One Out For This Bottle-Playing Robot

If you have an iota of musicality, you’ve no doubt noticed that you can play music using glass bottles, especially if you have several of different sizes and fill them with varying levels of water. But what if you wanted to accompany yourself on the bottles? Well, then you’d need to build a bottle-playing robot.

First, [Jens Maker Adventures] wrote a song and condensed it down to eight notes. With a whole lot of tinkling with a butter knife against their collection of wine and other bottles, [Jens] was able to figure out the lowest note for a given bottle by filing it with water, and the highest note by emptying it out.

With the bottle notes selected, the original plan was to strike the bottles with sticks. As it turned out, 9g servos weren’t up to the task, so he went with solenoids instead. Using Boxes.py, he was able to parameterize a just-right bottle holder to allow for arranging the bottles in a circle and striking them from the inside, all while hiding the Arduino and the solenoid driver board. Be sure to check it out after the break.

Don’t have a bunch of bottles lying around? You can use an Arduino to play the glasses.

Continue reading “Pour One Out For This Bottle-Playing Robot”

2023 Halloween Hackfest: Organ-playing Skeleton Livens Up Halloween

Every hacker appreciates how off-the-shelf parts can be combined into something greater, and [bryan.lowder] demonstrates this beautifully with his organ-playing skeleton, a wonderful entry to our 2023 Halloween Contest!

Skelly the 3-foot-tall novelty skeleton animatedly plays Bach’s Toccata and Fugue in D Minor while perched at an old (and non-functional) Hammond organ. The small animatronic skeleton has canned motions that work very well for mock organ playing while an embedded MP3 player takes care of playing the music.

That’s not to say the project didn’t have its challenges. Integrating off-the-shelf components into a project always seems to bring its own little inconveniences. In this case, the skeleton the MP3 player both expect to be triggered with button pushes, but taping the button down wasn’t enough to get the skeleton moving when power was applied. [bryan] ended up using relays to simulate button pushes, and a 555 timer circuit to take care of incorporating a suitable delay.

As [bryan] puts it, “a technical tour de force it ain’t, but it is practical and it works and it was done on time” which is well said. Watch Skelly in action in the video, embedded below. There’s also a second video showing the homebrewed controller and MP3 player, both concealed under Skelly’s robe.

Continue reading “2023 Halloween Hackfest: Organ-playing Skeleton Livens Up Halloween”

Rotating Necked Guitar Looks Difficult To Play

Have you ever looked at a guitar and thought “Nah, that’s way too easy to play.”[Mattias Kranz] seems to have done, so he built the 360 Guitar, a new instrument with a circular, rotating neck. The rotating neck means that it can have more strings than most: we think that it has sixteen, but it’s hard to tell. Anyway, it has a lot of strings and looks utterly impractical, which makes it an exciting project.

The basic idea is intriguing: take a conventional guitar design and replace the fretboard with a rotating pillar. Perhaps even stick a motor in there to rotate it on command. Each of the strings is mounted along this pillar using standard string retainers and tuning pegs, with frets along the pillar. Because you can fit so many strings, you can use all of the standard strings for a bass and treble guitar, plus a few extra like the thickest bass string available and the thinnest guitar strings. It’s like a four-dimensional Chapman Stick.

[Mathias] is still working on the project as you can see in the video below the break, so we will be interested to see what new design aspects he comes up with, like the plan to use a motor to rotate the neck. [Mattias] has built a few instruments that we have featured before, like the Helium guitar, which replaces the resonant cavity with a helium balloon, and the Plasma Piano, a combination of piano and tuned plasma coil.

Continue reading “Rotating Necked Guitar Looks Difficult To Play”

Upgraded Toy Guitar Plays Music

Getting the finishing details on a Halloween costume completed is the key to impressing friends and strangers alike on the trick-or-treat rounds. Especially when it comes to things like props, these details can push a good Halloween costume to great with the right touches. [Jonathan]’s friend’s daughter will be well ahead of the game thanks to these additions to a toy guitar which is part of her costume this year.

The toy guitar as it was when it arrived had the capability to play a few lackluster sound effects. The goal here was to get it to play a much more impressive set of songs instead, and to make a couple upgrades along the way as well. To that end, [Jonathan] started by dismantling the toy and investigating the PCBs for potential reuse. He decided to keep the buttons in the neck of the guitar despite their non-standard wiring configuration, but toss out the main board in favor of an ESP32. The ESP32 is tasked with reading the buttons, playing a corresponding song loaded on an SD card, and handling the digital to analog conversion when sending it out to be played on the speaker.

The project doesn’t stop there, though. [Jonathan] also did some custom mixing for the songs to account for the lack of stereo sound and a working volume knob, plus he used the ESP32’s wireless capabilities to set the guitar up as a local file server so that songs can be sent to and from the device without any wires. He also released the source code on the project’s GitHub page for anyone looking to use any parts of this project. Don’t forget there’s a Halloween contest going on right now, so be sure to submit the final version of projects like these there!

Continue reading “Upgraded Toy Guitar Plays Music”