Malicious Raspberry Pi Power Strip Looks A Bit Scary

What you see here is a Raspberry Pi shoehorned into a power strip. The idea is to leverage the power and low-cost of this board into a stealthy network observation device. It packs a similar punch as the Power Pwn but should cost at least $1100 less!

The fact that when you plug your Ethernet into this ‘surge protector’ it starts sniffing your traffic doesn’t really scare us. It’s the mains wiring that traverses the RPi itself that’s a bit unnerving. Call us overly-protective, but we like to see some shielding between our high-voltage and low-voltage components. But that aside, the rest of the hack is pretty solid. That item wrapped in electrical tape is a power converter for the board itself. It’s not shown here, but the NIC is patched into the surge protector’s RJ-45 connector. The one thing that might be nice to include is a WiFi nub so that you can access the strip wirelessly. This would open the door for other snooping items, like a small microphone.

Wearable Raspberry Pi Turns You Into The Borg

The Hoboken hackerspace, MakerBar, recently hosted a very special guest – [Rob Bishop] from the Raspberry Pi Foundation. Wanting to impress [Rob], [Zach] and a few others from MakerBar put together a wearable computer based on the Raspberry Pi in just a few hours.

Putting a Raspi, small Bluetooth keyboard and mouse combo, and a USB charger equipped with lithium-ion battery wasn’t that hard. The tricky part was finding a wearable display. Luckily, [Zach] had a pair of MyVu Crystal video glasses lying around and after a tricky bit of dissassembly, the folks at MakerBar had a completely wearable computer.

Apart from the RCA cable connecting the Raspi to the glasses, the project is completely wireless; with a small webcam also mounted to the display, the Pi in the Face could easily be a platform for figuring out what to do with Google Glass.

[Zach] said the entire setup could be reconstructed for about $100, a fair price for being turned in to [Locutus] of Borg

advice

Machine Offers Cheap Advice – Charges More For Something Profound

[Nick Johnson] recently wrote in, sharing a neat project he put together in his spare time.

Our readers are most likely familiar with the ubiquitous “fortune” program that ships with many *nix distros, offering cheeky comments and quotes with the press of a button. [Nick] thought it would be cool to build a fortune telling machine using the app, resulting in the handsome device you see above.

The laser-cut wooden case is home to a Raspberry Pi which does the heavy lifting, a coin acceptor, an LCD screen for displaying the device’s status, along with a SparkFun thermal printer. Upon feeding the machine some money, the user can press the “Advise Me” button, prompting the RaspPi to present a printed fortune from its vast database of sayings. [Nick] took some time to do some rough categorization of the fortune databases, enabling the machine to offer more substantial content as the user inputs more coins.

Check out the video below to see [Nick’s] fortune telling machine in action.

Continue reading “Machine Offers Cheap Advice – Charges More For Something Profound”

A Truly Professional Raspi Analog Input

Much to the chagrin of hardware tinkerers, the Raspberry Pi doesn’t have analog inputs on its GPIO pins. Sure, you can blink a LED with just a few console commands, but reading sensors with a bone-stock Raspi requires a little additional hardware. [Brian Dorey] just released a board that allows for 8 analog inputs on the Raspberry Pi with a 16-bit resolution that is much higher than any Arduino-based build.

[Brian]’s build is based on an earlier, similar iteration of a Raspi analog board we saw last July. Like the previous version, the new professionally made PCBs use a pair of Microchip MCP3428 analog to digital converter. These ADCs are able to sample four channels at a resolution of 16 bits; a vast improvement over the 8-bit ADCs included on every Arduino.

The boards communicate with the Raspberry Pi over an I2C serial bus using a neat stackable header. In theory, it should be possible to use several of these boards and measure dozens of analog channels, but we’ll leave a demonstration of that up to [Brian].

3D Printer Control For The Raspi

Instead of dedicating his laptop to control his RepRap all night, [Walter] is using a Raspberry Pi as an Internet-enabled front end for his 3D printer.

Before [Walter] got his hands on a Raspberry Pi, he set up his laptop next to his RepRap and let the machine do its work for hours on end. Obviously, this tied up his laptop for a while so when his Raspi was delivered he was eager to offload the responsibilities of controlling a printer to his new Linux board.

Right now, [Walter] has his Raspberry Pi set up as a web interface able to control his printer similar to Pronterface. We have to note that the Raspberry Pi isn’t driving servos or feeding filament onto the bed; those responsibilities are still handled by the RepRap electronics, but the ability to use a 3D printer over the web is still pretty cool.

[Walter] is putting the finishing touches on his 3D printer web interface, after which he’ll upload everything onto the git. Planned features for future updates include uploading gcode from the web and an option to connect a webcam for visual feedback when controlling a remote printer.

Video demo after the break.

Continue reading “3D Printer Control For The Raspi”

Raspy Juice Gives You Serial Ports And Servo Control

Up next on the continual march of expansion boards for the Raspberry Pi is the Raspy Juice, a board designed to break out the GPIO pins on the Raspberry Pi into servo, serial, and other miscellaneous connections.

The Raspy Juice features an ATMega168A microcontroller connected to the Raspberry Pi as an I2C slave device. Not only does the addition of a microcontroller add analog inputs to the Raspberry Pi, but also RS232 and RS485 serial connections, a real-time clock, and four JST plugs for hobby servos.

Because the Raspberry Pi can be powered from the GPIO header, the creator, [NTT] added a buck regulator so batteries or solar cells can be used to power the Raspberry Pi.

The Raspberry Pi is a terribly awesome robotics platform, but sadly limited by its capability to drive motors and servos natively. The Raspy Juice adds some much-needed capability to the Raspberry Pi, and we can’t wait to see a robot take its first steps with this expansion board.

64 Rasberry Pis Turned Into A Supercomputer

In retrospect, it was only a matter of time before someone turned a bunch of Raspberry Pis into a supercomputer.

The Raspi supercomputer is the result of a project headed up by University of Southampton professor [Simon Cox]. Included in the team are a gaggle of grad students and [Simon]’s 6-year-old son who graciously provided the material, design, and logistics for the custom LEGO case.

The Iridris-Pi supercomputer, as the team calls their creation, consists of 64 Raspberry Pis, all configured for parallel processing using a lightweight version of MPI. [Simon] was kind enough to put up an excellent guide for turning two (or more) Raspberry Pis into a supercomputer.

The machine has a full 1 TB of disk space provided by a 16 GB SD card in each node. Although the press release doesn’t go over the computational capabilities of the Iridris-Pi, the entire system can be powered from a single 13 A supply.

If you’re wondering what it would take to get a Raspberry Pi supercomputer into the TOP500 list of supercomputers, a bit of back-of-the-envelope computation given the Raspi’s performance and the fact the 500th fastest computer can crank out about 60 TeraFLOPS/s, we’ll estimate about 1.4 Million Raspis would be needed. At least it’s a start.