Ted The Talking Toaster

The team behind [8 Bits and a Byte] have built a talking toaster. More accurately, they retrofitted their existing toaster with some hardware components to make it appear to talk and get angry at its users. While the actual toaster functionality isn’t necessary for the build, it certainly allows the project to have a more whimsical vibe.

The project uses a Raspberry Pi 3 and a Google AIY kit, consisting of a HAT, microphone, and speaker. Servos control the movement of the toaster’s eyebrows with the help of the HAT. Some decorative materials in the form of googly eyes and pipe cleaners help bring other features of the talking toaster to life.

The control flow for the chatbot makes use of Google’s speech-to-text for picking up text from audio input, the Dialogflow API to match intent, and Text-to-Speech to pipeline possible answer back to the Raspberry Pi to play over a speaker. They also used Remo.tv to broadcast live updates from the toaster to anyone on an online feed, allowing users in a chatroom to talk directly to Ted.

While Ted’s communications may be quite limited, there’s certainly no limit to the number of interactions he’ll be having online now!

Continue reading “Ted The Talking Toaster”

All Your SDR Software In A Handy Raspberry Pi Image

The SDR revolution has brought a bonanza of opportunities for experimentation to the radio enthusiast, but with it has come a sometimes-confusing array of software for which even installation can be a difficult prospect for an SDR novice. If you’re bamboozled by it all then help may be at hand courtesy of [Luigi Cruz], who has packaged a suite of ready-to-go popular SDR software in an OS image for the Raspberry Pi.

On board the Raspbian-based OS image are SDR Angel, Soapy Remote, GQRX, GNURadio, LimeUtil, and LimeVNA. In hardware terms the RTL-SDR is supported, along with the LimeSDR, PlutoSDR, Airspy, and Airspy HF. All are completely ready-to-go and even have desktop shortcuts, so if the CLI scares you then you can still dive in and play. More importantly it’s designed for use with SDR transmitters as well as receivers, so the barrier for full SDR operation for radio amateurs has become significantly lower too.

This year has seen the seven-year anniversary of the RTL-SDR hack that probably did most to kickstart the use of SDRs in our community. Our colleague [Tom Nardi] wrote a retrospective that’s worth a look for its overview of some SDR tricks that have evolved over that time. Meanwhile if you don’t mind restricting your outlook somewhat, it’s possible to turn the Raspberry Pi 3 into an SDR all without any extra hardware.

Santa Claws: Sharpen Your Skills For A Good Cause

Want to do a bit of good this holiday season without leaving your couch or battle station? Well step right up and try your hand at Santa Claws, the charitable claw machine created by UK-based firm Liberty Games. For every toy you can maneuver to the chute, Liberty Games will donate money to Crisis, a national charity devoted to ending homelessness.

The machine is filled with special Christmas-themed stuffed animals that represent different cash values from £1 to £5. And these toys are doing double duty — after the holiday, they’ll all be donated to a good cause. In order to make this playable worldwide, Liberty used a Raspberry Pi, two Pi Face boards to interface the claw machine’s controls, and a Pi Face rack to everything together. They have the machine set on ‘generous’, so go have fun.

Has this rekindled a longing for your own claw machine? Yeah, us too. Here’s a full-size machine that runs on a Teensy.

Commodore Tape Drive Emulator On A Raspberry Pi

We imagine most of the people reading Hackaday have an old Raspberry Pi or two laying around. It’s somewhat less likely you’ve still got an 8-bit Commodore in working condition, but we’d wager there’s more than a few in the audience that can count themselves among both groups. So why not introduce them?

[RhinoDevel] writes in to tell us about CBM Tape Pi , an open source Commodore tape drive emulator for Raspberry Pi that needs only a handful of passive components to get wired up. Even better, the project targets the older Pis that are more likely to be languishing around in the parts bin. In the video after the break, a Commodore PET can be seen happily loading content from the original Raspberry Pi with its quaint little composite video connector.

Without any special software on the Commodore itself, the project allows the user to load and save PRGs on the Pi’s SD card, as well as traverse directories. Don’t expect stellar I/O, as [RhinoDevel] notes that no fast loader is currently implemented. Of course if you’re enough of a devotee to still be poking around a VIC-20 or C64 this far into 21st century, then we imagine you’ve got enough patience to get by.

Continue reading “Commodore Tape Drive Emulator On A Raspberry Pi”

An Open Source Boating Autopilot With Some Custom Tweaks

Piloting a boat is all well and good, but can get dull when you’d rather be reclining on the deck with a cold beverage in hand. For [Timo Birnschein], this simply wouldn’t do. He began to gather parts to put together an autopilot to keep his boat on the straight and narrow.

The build is based around OpenPlotter, which uses a battery of marine-ready software to handle routing charts, autopiloting, and providing a compass heading for navigation. Naturally, it all runs on a Raspberry Pi. In combination with PyPilot, it can be used to let the vessel drive itself around a series of waypoints, allowing you to soak up the atmosphere on the water without having to constantly steer the craft.

[Timo] ran into some issues, however, with the hardware side of things. Existing implementations for motor control to drive the rudder weren’t quite cutting it, so the system was reworked to run with a robust H-bridge and some fresh Arduino code. This was combined with a custom rudder sensor built with a potentiometer and some 3D printed gears. Future work aims to double up the rudder sensors for redundancy, something we should all consider at times.

Overall, the system is starting to come together, and [Timo]’s enjoying letting his boat think for itself. He notes that it’s very important to keep an eye on the boat while operating in this condition, lest it veer off course – many a boat has been lost this way. We’re always supporters of a mature attitude towards autonomous vehicle operations!

Reverse Engineering An Old Bus Display

When his makerspace was gifted a pair of Luminator LED signs of the sort you might see on the front of a bus, [PWalsh] decided to pull one apart to see what made it tick. Along the way, he managed to reverse engineer its control protocol and replace its original control board with a WiFi-connected Raspberry Pi. Now they can use the LED signs to show whatever they want; no bus required.

As they were designed for automotive use, the signs were wired for 12 volts DC. So the first order of business was fitting it with an AC/DC converter so it could be plugged into the wall. After he measured the display’s current consumption, [PWalsh] estimated it’s maximum energy consumption and determined an old ATX computer power supply was more than up to the task.

With the sign happily running battery-free, he could begin figuring out how to talk to it. Noticing a MAX485 RS-485 converter on the PCB, gave a pretty good idea of what language it was speaking, and with the aid of his trusty oscilloscope, he was able to suss out the baud rate. A cheap USB to RS-485 converter was then wired in between the sign and its control board so he could sniff the data passing over the line.

From there, the final piece of the puzzle was studying the captured data and figuring out the protocol. [PWalsh] was able to identify packet headers and ASCII characters, and pretty soon knew enough about how the sign communicated that he was able to remove the control board entirely and just push text and images to it right from the Pi. He’s even made his framework available for anyone else who might have a similar piece of bus-signage laying around.

Even if you’re not looking to add one of these signs to your lab, this project is a fantastic example of protocol reverse engineering with low-cost tools and simple techniques. We always love to see the process broken down step by step like this, and our hat’s off to [PWalsh] for delivering the goods in a big way.

This isn’t the first time we’ve seen these sort of LED signs get the “Internet of Things” treatment, and if you’re content with a somewhat scaled down version, you could always just build your own display rather than waiting on the local public transit vehicle to get parted out.

Not-Quite-So-Hot Stuff: A Thermal Exam On The Latest Raspberry Pi

When the Raspberry Pi 4 was first launched, one of its few perceived flaws was that it had a propensity to get extremely hot. It’s evidently something the Pi people take very seriously, so in the months since they have addressed the problem with a set of firmware updates. Now they’ve taken a look at the effect of the fixes in a piece on the Raspberry Pi web site, and it makes for an interesting comparison.

The headline figure is that all updates together remove about a watt of power from the load, a significant quantity for what is still a board that can run from a capable phone charger. Breaking down the separate parts of the updates is where the meat of this story lies though, as we see the individual effects of the various USB, memory, power management and clocking updates. In temperature terms they measure an on-load drop from 72.1 °C to 58.1 °C, which should be a significant improvement for any Pi 4 owner.

There is a debate to be had over in what role a computer such as a Pi should serve. As successive revisions become ever more desktop-like in their capabilities, do they run the risk of abandoning the simplicity of a cheap Linux box as a component that makes us come back for more? It’s a possibility, but one they have very well addressed by developing the Pi Zero. They have also successfully avoided the fate of the Arduino — inexorably tied to its ATmega powered original line despite newer releases. As we have frequently said when reviewing Raspberry Pi competitors, it’s the software support that sets them apart from the herd, something this power-draw story demonstrates admirably.