Remembering CompuServe: The Online Experience Before The World Wide Web

July 1981 cover of CompuServe's magazine.
July 1981 cover of CompuServe’s magazine.

Long before the advent of the Internet and the World Wide Web, there were other ways to go online, with Ohio-based CompuServe being the first to offer a consumer-oriented service on September 24, 1979. In an article by [Michael De Bonis] a listener-submitted question to WOSU’s Curious Cbus is answered, interspersed with recollections of former users of the service. So what was CompuServe’s contribution to society that was so important that the state of Ohio gave historical status to the building that once housed this company?

The history of CompuServe and the consumer-facing services which it would develop started in 1969, when it was a timesharing and remote access service for businesses who wanted to buy some time on the PDP-10s that Golden United Life Insurance as the company’s subsidiary used. CompuServe divested in 1975 to become its own, NASDAQ-listed company. As noted in the article, while selling timeshares to businesses went well, after business hours they would have these big computer systems sitting mostly idly. This was developed by 1979 into a plan to give consumers with their newfangled microcomputers like the TRS-80 access.

Originally called MicroNet and marketed by Radio Shack, the service offered the CompuServe menu to users when they logged in, giving access to features like email, weather, stock quotes, online shipping and booking of airline tickets, as well as online forums and interactive text games.

Later renamed to CompuServe Information Service (CIS), it remained competitive with competitors like AOL and Prodigy until the mid-90s, even buying one competitor called The Source. Ultimately it was the rise of Internet and the WWW that would close the door on this chapter of computing history, even as for CompuServe users this new Internet age would have felt very familiar, indeed.

Reviving A 15-Year Old Asus EeePC With Modern MX Linux

Welcome back to 2010 and the Asus eeePC Netbook, Seashell series. (Credit: Igor Ljubuncic)
Welcome back to 2010 and the Asus eeePC Netbook, Seashell series. (Credit: Igor Ljubuncic)

It’s often said these days that computers don’t become outdated nearly as quickly as they did in the past, with even a decade-old computer still more than capable of handling daily tasks for the average person. Testing that theory, [Igor Ljubuncic] revisited the Asus eeePC which he purchased back in 2010. Although it’s not specified exactly which model it is, it features an Intel Atom N450 (1 core, 2 threads) running at 1.67 GHz, 1 GB of 667 MHz DDR2 and a 250 GB HDD, all falling into that ultra-portable, 10.1″ Netbook category.

When new, the netbook came with Windows 7 Starter Edition, which [Igor] replaced with Ubuntu Netbook Remix 10.04, which was its own adventure, but the netbook worked well and got dragged around the world on work and leisure assignments. With increasingly bloated updates, Ubuntu got replaced by MX Linux 18, which improved matters, but with the little CPU struggling more and more, [Igor] retired the netbook in 2019. That is, until reviving it recently.

Upon booting, the CMOS battery was of course empty, but the system happily continued booting into MX Linux. The Debian update repositories were of course gone, but changing these to the archive version allowed for some (very old) updates. This raised the question of whether modern Linux would even run on this ancient Atom CPU, the answer of which turned out to be a resounding ‘yes’, as MX Linux still offers 32-bit builds of its most recent releases. A 15 minute upgrade process later, and a 2 minute boot later, the system was running a Linux 6.1 kernel with Xfce desktop.

As for the performance, it’s rather what you expect, with video playback topping out at 480p (on the 1024×600 display) and applications like Firefox lacking the compact density mode, wasting a lot of screen space. Amazingly the original battery seems to still deliver about half the runtime it did when new. All of which is to say that yes, even a ‘low-end’ 2010-era netbook can still be a very usable system in 2024, with a modern OS.

New Release Of Vision Basic: Hot New Features!

As the Commodore 64 ages, it seems to be taking on a second life. Case in point: Vision BASIC is a customized, special version of the BASIC programming language with a ton of features to enable Commodore 64 programs to be written more easily and with all sorts of optimizations. We’ve tested out both the original 1.0 version of Vision BASIC, and now with version 1.1 being released there are a whole host of tweaks and updates to make the experience even better!

One of the only limitation of Vision BASIC is the requirement for expanded RAM. It will not run on an unexpanded C64 — but the compiled programs will, so you can easily distribute software made using Vision on any C64. A feature introduced in version 1.1 is support for GeoRAM, a different RAM expansion cartridge, and modern versions of GeoRAM like the NeoRAM which has battery-backed RAM. This allows almost instantaneous booting into the Vision BASIC development environment.

Continue reading “New Release Of Vision Basic: Hot New Features!”

Where Did The Japanese Computers Go?

If you are a retrocomputer person, at least in North America and Europe, you probably only have a hazy idea of what computers were in the Japanese market at the time we were all buying MSDOS-based computers. You may have heard of PC-98, but there were many Japanese-only computers out there, and a recent post by [Misty De Meo] asks the question: What happened to the Japanese computers?

To answer that question, you need a history lesson on PC-98 (NEC), FM Towns (Fujitsu), and the X68000 (Sharp). The PC-98 was originally a text-only MSDOS-based computer. But eventually, Microsoft and NEC ported Windows to the machine.

The FM Towns had its own GUI operating system. However, it too had a Windows port and the machine became just another Windows platform. The X68000, as you may well have guessed, used a 68000 CPU. Arguably, this was a great choice at the time. However, history shows that it didn’t work out, and when Sharp began making x86-based Windows machines — and, of course, they did — there was no migration path.

[Misty] makes an interesting point. While we often think of software like Microsoft Office as driving Windows adoption, that wasn’t the case in Japan. It turns out that multitasking was the key feature since Office, at the time, wasn’t very friendly to the native language.

So where did the Japanese computers go? The answer for two of them is: nowhere. They just morphed into commodity Windows computers. The 68000 was the exception — it just withered away.

Japanese pocket computers were common at one time and have an interesting backstory. Japanese can be a challenge for input but, of course, hackers are up to the challenge.

There’s No Lower Spec Linux Machine Than This One

It’s not uncommon for a new distro version to come out, and a grudging admission that maybe a faster laptop is on the cards. Perhaps after seeing this project though, you’ll never again complain about that two-generations-ago 64-bit multi-core behemoth, because [Dimitri Grinberg] — who else! — has succeeded in booting an up-to-date Linux on the real most basic of processors. We’re not talking about 386s, ATmegas, or 6502s, instead he’s gone right back to the beginning. The Intel 4004 was the first commercially available microprocessor back in 1971, and now it can run Linux.

So, given the 4004’s very limited architecture and 4-bit bus, how can it perform this impossible feat? As you might expect, the kernel isn’t being compiled to run natively on such ancient hardware. Instead he’s achieved the equally impossible-sounding task of writing a MIPS emulator for the venerable silicon, and paring back the emulated hardware to the extent that it remains capable given the limitations of the 1970s support chips in interfacing to the more recent parts such as RAM for the MIPS, an SD card, and a VFD display. The result is shown in the video below the break, and even though it’s sped up it’s clear that this is not a quick machine by any means.

We’d recommend the article as a good read even if you’ll never put Linux on a 4004, because of its detailed description of the architecture. Meanwhile we’ve had a few 4004 stories over the years, and this one’s not even the first time we’ve seen it emulate something else.

Continue reading “There’s No Lower Spec Linux Machine Than This One”

Design And The Golden Rule

You often learn the golden rule or some variation of it as early as kindergarten. There are several ways to phrase it, but you most often hear: “Do unto others as you would have them do unto you.” While that’s catchy, it is really an aphorism that encourages us to consider the viewpoints of others. As people who design things, this can be tricky. Sometimes, what you want isn’t necessarily what most people want, and — conversely — you might not appreciate what most people want or need.

EDIT/1000

HP/1000 CC-BY-SA-3.0 by [Autopilot]
I learned this lesson many years ago when I used to babysit a few HP/1000 minicomputers. Minicomputer sounds grand, but, honestly, a Raspberry Pi of any sort would put the old HP to shame. Like a lot of computers in those days, it had a text editor that was arcane even by the standards of vi or emacs. EDIT/1000 couldn’t be sure you weren’t using a printing terminal, and the commands reflect that.

For example, printing a few lines around the current line requires the command: “/-2,L,5” which isn’t that hard, I suppose. To delete all lines that contain a percent sign, “1$ D/%/A/” assuming you don’t want to be asked about each deletion.

Sure, sure. As a Hackaday reader, you don’t find this hard to puzzle out or remember. But back in the 1980s, a bunch of physicists and chemical engineers had little patience for stuff like that. However, the editor had a trick up its sleeve.

Continue reading “Design And The Golden Rule”

PC Floppy Copy Protection: Electronic Arts Interlock

Continuing the series on floppy copy protection, [GloriousCow] examines Electronic Arts’ Interlock system. This was used from 1984 to 1987 for at least fourteen titles released on both 5.25″ and 3.5″ floppies. Although not officially advertised, in the duplication mark sector the string ELECTRONIC ARTS IBM INTERLOCK. appears, hence the name. Compared to other copy protection systems like Softguard Superlok this Interlock protection poses a number of somewhat extreme measures to enforce the copy protection.

The disk surface of Side #0 of the 1984 mystery-adventure title, Murder on the Zinderneuf (Credit: GloriousCow)
The disk surface of Side #0 of the 1984 mystery-adventure title, Murder on the Zinderneuf (Credit: GloriousCow)

Other than the typical issues that come with copying so-called ‘booter’ floppies that do not use DOS but boot directly into the game, the protection track with Interlock is rather easy to spot, as seen on the right. It’s the track that lights up like a Christmas tree with meta data, consisting out of non-consecutive sector IDs. Of note is the use of ‘deleted’ sector data marks (DDAM), which is a rarity in normal usage. Along with the other peculiarities of this track it requires an exact query-response from the disk to be accepted as genuine, including timings. This meant that trying to boot a straight dump of the magnetic surface and trying to run it in an emulated system failed to work.

Reverse-engineering Interlock starts with the stage 0 bootloader from the first sector, which actually patches the End-of-Track (EOT) table parameter to make the ridiculous number of sectors on the special track work. The bootloader then loads a logo, which is the last thing you’ll see if your copy is imperfect.

Decrypting the second stage bootloader required a bit of disassembly and reverse-engineering, which uncovered some measures against crackers. While the actual process of reverse-engineering and the uncovered details of Interlock are far too complex to summarize here, after many hours and the final victory over the handling of an intentional bad CRC the target game (Murder on the Zinderneuf from 1984) finally loaded in the emulator.

After confirming the process with a few other titles, it seems that Interlock is mostly broken, with the DOS-based title ArcticFox (1987) the last hurdle to clear. We just hope that [GloriousCow] is safe at this point from EA’s tame lawyers.

Interested in more copy protection deep dives? Check out the work [GloriousCow] has already done on investigating Softguard’s Superlok and Formaster’s Copy-Lock.