A Very 2017 Take On A BBC Micro

In the early 1980s, there were a plethora of 8-bit microcomputers on the market, and the chances are that if you were interested in such things you belonged to one of the different tribes of enthusiasts for a particular manufacturer’s product. If you are British though there is likely to be one machine that will provide a common frame of reference for owners of all machines of that era: The Acorn BBC Microcomputer which was ubiquitous in the nation’s schools. This 6502-driven machine is remembered today as the progenitor and host of the first ARM processors, but at the time was notable for the huge array of built-in interfaces it contained. Its relatively high price though meant that convincing your parents to buy you one instead of a ZX Spectrum was always going to be an uphill struggle.

So, you never owned a BBC Micro, and this has scarred you for life. Never mind, all is not lost, for now you can have that Acorn experience without scouring eBay for a classic micro, by running one entirely in silicon on a myStorm FPGA board.

To be fair, running classic hardware on an FPGA is nothing new and there have been a few BBC Micros implemented in this way, not to mention an Acorn Atom. But this project builds on the previous FPGA BBC Micros by porting it entirely to Verilog and incorporating some of the bug fixes from their various forks. There are screenshots of the result running several classic games, as well as test screens and a benchmark revealing it to be a faithful reproduction of a 2MHz BBC Micro.

We covered the myStorm board when it arrived last year. We’ve also brought you another FPGA board running as a coprocessor for a real BBC micro.

Thanks [monsonite] for the tip. He also alerts us that the myStorm board’s ARM microcontroller can now be programmed from the Arduino IDE.

Retrocomputing With Open Source FPGAs

A few years ago, we saw the reverse engineering of the Lattice iCE40 bitstream, opening the door to a completely Open Source development tool chain for FPGAs. This was an astonishing amount of work from [Clifford Wolf], [Mathias Lasser], and [Cotton Seed], but since then we haven’t seen a whole lot from Project IceStorm. Now, that’s about to change, and in the coolest way possible. [hoglet] is retrocomputing on an ICE40 development board.

This is an implementation of the Acorn Atom on a myStorm BlackIce board. This board is basically just a Lattice iCE40 FPGA, a few support components, and a bunch of pin headers, some of which are in the not-so-handy Arduino pinout footprint. By porting some Acorn Atom implementations and a 6502 core to verilog, [hoglet] was able to stuff a cool old retrocomputer onto an Open Source FPGA development board. Video output is through a resistor DAC driving a VGA cable, and keyboard input is through PS/2.

Just about everything about this Open Source implementation of the Acorn works, and there’s still a lot left in the iCE40 FPGA. [hoglet] is able to run the 6502 core at 25MHz, which means just about every 6502-based system should be able to run on the BlackIce board.


SCSI Emulation Of A Rare Peripheral For The Acorn BBC Micro

Mass storage presents a problem for those involved in the preservation of older computer hardware. While today’s storage devices are cheap and huge by the standards of decades ago their modern interfaces are beyond the ability of most older computers. And what period mass storage hardware remains is likely to be both unreliable after several decades of neglect, and rather expensive if it works due to its rarity.

The Domesday Project 86 team face this particular problem to a greater extent than almost any others in the field, because their storage device is a particularly rare Philips Laser Disc drive. Their solution is the BeebSCSI, a small board with a CPLD and an AVR microcontroller providing host adaptor and SCSI-1 emulation respectively for a modern micro-SD card.

An original BBC Domesday set-up. Regregex [CC BY 3.0], via Wikimedia Commons.
An original BBC Domesday set-up. Regregex [CC BY 3.0], via Wikimedia Commons.
1986 saw the 900th anniversary of the Domesday Book, a survey and inventory of his new kingdom commissioned in 1086 by the Norman king of England, William the Conqueror. One of the ways the event was marked in 1986 was the BBC Domesday Project, a collaboration between the BBC, several technology companies including Acorn and Philips, and a huge number of volunteers from the general public and the British school system. Pictures, video, and text were gathered relating to locations all over the country, and the whole was compiled with a not-quite-hypertext interface onto a set of Laser Disc ROMs. The system required the upgraded Master version of the 6502-based BBC Micro, a SCSI interface, and a special Laser Disc player model manufactured by Philips for this project alone. The hardware was expensive, rare, and unreliable, so few of its contributors would have seen it in action and it faded from view to become a cause celebre among digital archivists.

There have been several resurrections of the project over the years, including one from the BBC themselves which you can browse online. What makes this project different from the others is that it strives to present the Domesday experience as it was originally intended to be viewed, on as far as possible the original hardware and with the original BBC Micro interface. Many original parts such as BBC Master systems are relatively easy to source in 2016, but the special Laser Disc player is definitely not. This board replaces that impossible link in the chain, and should allow them to present a glimpse of 1986 in more than just the on-screen information.

If you would like to see an original BBC Domesday Project system, you can find one in action at the National Museum of Computing, at Bletchley Park. Meanwhile we’ve already featured another peripheral from the same stable as this one, the SmallyMouse USB-to-quadrature mouse emulator.

Hook Any Mouse to an Acorn

Acorn was one of the great IT giants that rose high and then fell to obscurity during the rise of personal computing. However, for many hobbyists these computers are as important and as loved as the Commodore 64. [Simon Inns] has made a great adapter to interface modern USB mice to these old boxes. 

After thirty years of interaction with people, one might be hard pressed to find a working mouse for an older computer. On top of that, even if you did, these mice are likely a lackluster experience to begin with. They were made long before industrial designers were invited to play with computers and are often frustrating and weird. Cotton swabs and alcohol are involved, to say the least.

[Simon]’s box converts a regular USB HID compliant mouse to a quadrature signal that these 8-bit computers like. The computer then counts the fake pulses and happily moves the cursor around. No stranger to useful conversion boxes, he used an Atmel micro (AT90USB1287) with a good set of USB peripherals. It’s all nicely packed into a project box. There’s a switch on the front to select between emulation modes.

If you’d like one for yourself the code and schematics are available on his site. As you can see in the video below, the device works well!

Continue reading “Hook Any Mouse to an Acorn”

The Digistump Oak; An ESP8266 On Kickstarter

When it was first released, the ESP8266 was a marvel; a complete WiFi solution for any project that cost about $5. A few weeks later, and people were hard at work putting code on the tiny little microcontroller in the ESP8266 and it was clear that this module would be the future of WiFi-enabled Things for the Internet.

Now it’s a Kickstarter Project. It’s called the Digistump Oak, and it’s exactly what anyone following the ESP8266 development scene would expect: WiFi, a few GPIOs, and cheap – just $13 for a shipped, fully functional dev board.

The guy behind the Oak, [Erik Kettenburg], has seen a lot of success with his crowdfunded dev boards. He created the Digispark, a tiny, USB-enabled development board that’s hardly larger than a USB plug itself. The Digispark Pro followed, getting even more extremely small AVR dev boards out in the wild.

The Digistump Oak moves away from the AVR platform and puts everything on an ESP8266. Actually, this isn’t exactly the ESP8266 you can buy from hundreds of unnamed Chinese retailers; while it still uses the ESP8266 chip, there’s a larger SPI Flash, and the Oak is FCC certified.

Yes, if you’re thinking about building a product with the ESP8266, you’ll want to watch [Erik]’s campaign closely. He’s doing the legwork to repackage the ESP into something the FCC can certify. Until someone else does it, it’s a license to print money.

The FCC-certified ESP8266 derived module, cleverly called the Acorn, will be available in large quantities, packaged in JEDEC trays sometime after the campaign is finished. It’s an interesting board, and we’re sure more than one teardown of the Acorn will hit YouTube when these things start shipping.