Self-Driving Acura, Built In A Garage

[George Hotz], better known by his hacker moniker [GeoHot], was the first person to successfully hack the iPhone — now he’s trying his hand at building his very own self-driving vehicle.

The 26-year-old already has an impressive rap sheet, being the first to hack the PS3 when it came out, and to be sued because of it.

According to Bloomberg reporter [Ashlee Vance], [George] built this self driving vehicle in around a month — which, if true, is pretty damn incredible. It’s a 2016 Acura ILX with a lidar array on its roof, as well as a few cameras. The glove box has been ripped out to house the electronics, including a mini-PC, GPS sensors, and network switches. A large 21.5″ LCD screen sits in the dash, not unlike the standard Tesla affair.

Oh, and it runs Linux. Continue reading “Self-Driving Acura, Built In A Garage”

Feeling Force Through A Servo

Using force sensors it’s possible to chain a series of servo motors together so they not only move as one, but can detect and simulate the force that another feels. Which means if you built up a tele-presence robot with a servo-driven robotic arm, using the local control arm you could feel exactly what it feels like on the other side!

[Wolf Tronix] saw our post last week on Series Elastic Actuators, and shared what he was working on in the comments. As one tipster pointed out — it deserves its own feature!

He’s been designing his own Real Time Motion Control System and Mini Servo board, or RTMCS2 for short and shown off a short video of it in action. By adding a force feedback sensor to each servo, not only do they copy each other, but if you put a load on one, you’ll feel it on the others!

Continue reading “Feeling Force Through A Servo”

FIRST Robotics Gives Us Hope In The Next Generation Of Hackers

A top scoring team in FIRST Robotics shows off just what some high-school students are capable of. Called the Simbot SideSwipe, their 2015 robot is a slick piece of mechatronic genius, which according to our tipster was built in just six weeks by the students.

The robot is essentially a remote controlled palletizing forklift, capable of collecting and stacking six recycling totes, and a green bin. It’s an impressive combination of mechanical control and fabrication — though it is worth noting, these bots are remote controlled — not autonomous.

To encourage learning, the team has posted their engineering report, and even the CAD model online. They obviously had quite a bit of funding judging by their component selection, but regardless, we’re seriously impressed with both the design and execution of manufacturing their robot — especially if it was really built in just six weeks. Just take a look at the following videos:

Continue reading “FIRST Robotics Gives Us Hope In The Next Generation Of Hackers”

Industrial Automation In Action: Steam Controller Assembly

Right up front, we’ll cop to the inevitable “not a hack” comments on this one. This video of the Steam Controller assembly plant is just two minutes of pure robotics porn, plain and simple.

From injection molding of the case parts through assembly, testing and final palletizing of packaged controllers for the trip to distributors, Valve’s video is amazingly detailed and very well made. We’d wager that the crane shots and the shots following product down conveyors were done with a drone. A grin was had with the Aperture Labs logo on the SCARA arms in the assembly and testing work cell, and that inexplicable puff of “steam” from the ceiling behind the pallet in the final shot was a nice touch too. We also enjoyed the all-too-brief time-lapse segment at around 00:16 that shows the empty space in Buffalo Grove, Illinois being fitted out.

This may seem like a frivolous video, but think about it: if you’re a hardware hacker, isn’t this where you want to see your idea end up? Think of it as inspiration to get your widget into production. You’ll want to get there in stages, of course, so make sure you check out [Zach Fredin]’s 2015 Hackaday Superconference talk on pilot-scale production.

Continue reading “Industrial Automation In Action: Steam Controller Assembly”

Beautiful Sidewalk Graffiti Machine

Our hero [Alex] just built a sidewalk graffiti machine, and it’s a beauty to behold, so make sure you check out the video below the break. But don’t neglect [Alex]’s blog, and the build videos throughout. (Nice t-shirt in the wheel-making video, BTW.)

The machine itself is basically a two-meter wide printer where the roller is replaced with drive wheels. The frame, made of plywood, looks great and helps keep the machine light weight. Everything is done with DC motors and timing belts, which means motor encoders and closed-loop control in the firmware. It connects via a WiFi serial bridge, made with an ESP8266, to [Alex]’s cell phone.

Everything, from plans to software, is available on [Alex]’s GitHub for the project.

Continue reading “Beautiful Sidewalk Graffiti Machine”

Robot Listens To Commands–Literally

Where you might see a can, [Adam Kumpf] sees a robot. [Adam’s] robot (named [Canny]) doesn’t move around, but it does have expressive eyebrows, multicolored eyes, and a speaker for a mouth. What makes it interesting, though, is the fact that it receives audio commands via the headphones it wears. You can see [Canny] in action in the video below.

The headphones couple audio tones to [Canny’s] microphone using AFSK (audio frequency shift keying). [Canny] uses an opamp to bring the microphone level up and then uses a 567 PLL IC to decode the audio tones. [Adam] selected two clever frequencies for the mark and space (12345 Hz and 9876 Hz). In addition to being numerically entertaining, the frequencies are far enough apart to be easy to detect, pass through the headphones with no problem, and are not harmonically related.

Continue reading “Robot Listens To Commands–Literally”

Creating Art In A Robot That Tastes With Its Feet

[Sarah Petkus] started off her career as a visual artist with traditional mediums. She has a webcomic called Gravity Road, but somewhere along the line she wanted her creations to come alive. These characters are robots – artistically designed robots – and turning this type of art into a real object isn’t something that happens very often.

Robots usually aren’t art. A Roomba is just a vacuum cleaner that’s meant to turn on a dime, thus the circular shape. The welding robots in a car factory aren’t art, they’re only tools to assemble cars. These are just devices built for a single purpose, and art is for any or every purpose. It’s not something you can really design, but you can engineer a few interesting solutions.

Continue reading “Creating Art In A Robot That Tastes With Its Feet”