Robot Controller More Fun Than An Actual Wii-U

wii-u-bot-controller

Okay, that’s probably not fair since we never gave the Wii-U a try at all. But doesn’t this seem like a much better idea for controlling a robot than playing a gaming console?

The photo above is a bit deceiving because the unit actually has quite a bit of depth. Despite that, the cleanliness of the build is very impressive. [Alec Waters] started off with a backup monitor meant for automotive use (we’d estimate 7″). There’s a radio receiver, two analog joysticks where your thumbs line up when holding the controller, and an Arduino to pull it all together. If you haven’t figured it out already, this displays the wireless video from the robot he’s controlling. He’s also include an auxiliary port which lets you bypass the radio receiver and plug in a video feed directly.

Still convinced you need Nintendo’s consumer controller with a built-in screen. Yes, that can be hacked to work with all your projects. But seriously, this is way more fun.

Controlling Motors Without A Microcontroller

serial

Think you need a microcontroller or a proper motor driver to control a motor? Not really. Because RS-232 serial ports are a hack in and of themselves, you can control two motors with only a serial port and a bridge driver.

Instead of using the data pins on the serial port, this circuit works on with the DTR and RTS control signals of an RS-232 interface. Unlike the data lines of a serial port, these control signals are high when they’re enabled and can also provide a small amount of current – enough to control a pair of pins on a TA7291P bridge driver.

The rest of the circuit consists of a few resistors and a pair of motors, and the software simply turns the DTR and RTS lines on and off. It’s enough for a small robot to waddle across a table, and given the correct driver is simple enough to mash together out of parts from a junk drawer.

Router Robot A Promising Playground For Young Hacker

router-robot-project

[Stephen Downward] has put together a very impressive Internet controlled robot. There are so many things about his video presentation (also embedded below) which we find delightful. Notably, it’s obvious that he knows what he’s talking about when discussing everything from the electronics chosen for the project, the mechanical assembly and the issues with its current state, as well as the software backend that gives him control of the rover.

The bulk of the rover is the Linksys WRT-54G router which he picked up at a thrift shop. This has been a popular model for building rovers for quite some time. [Stephen] is not driving directly from the router’s serial port, but that could be an adventure for him down the road. For now he’s using an Arduino Mega along with an Ethernet shield to connect the motors to his network. The IP camera on the front gives him the video feed to operate this completely over the Internet using his own program written in C#. He mentions that the CD wheels he has aren’t ideal because of their thin tread area (covered in masking tape) and the inaccurate mounting which leaves one of them at an angle. He’s hoping to design and print his own. He plans rent some time on a 3D printer at the local University when their 3D printing service comes back online.

We think the hardest part with robot building is getting your first platform up and running. Now that he’s got that it’s a matter of making improvements and add-ons. Since he’s got the I/O of the Mega at his disposal we’d like to see him implement a bunch of different sensor: line following, bump sensors, distance sensor, heck… maybe someday he’ll scavenge some Lidar for it!

Continue reading “Router Robot A Promising Playground For Young Hacker”

Nimble Dodgebot Is Super Skittish

img_3562

For one of [Aron’s] recent robotics modules at college he was tasked with building a small robot. He decided to make project Dodgebot, a cute and extremely quick robot that won’t run into things!

The body is made of perforated steel and supports the motor boxes with wheels (stolen from a toy perhaps?), two IR sensors, and the tidy protoboard on top to contain the electronics — seriously check out the wiring on it!

To control it he’s using an 18-pin dsPIC30F3012 and a SN754410NE driver. The robot works by detecting different states based on the distance measurements from each sensor, and then varying the output to each motor. It’s extremely quick and quite fun to watch as it seems to dodge everything in its path! See for yourself, after the break. 

Continue reading “Nimble Dodgebot Is Super Skittish”

RIVERWATCH: An Autonomous Surface-Aerial Marsupial Robot Team

cata

Every once in a while we get a tip for a project that really, really, really blows our minds. This is one of them.

It looks like a basic catamaran with a few extra bells and whistles — except it is so much more than that. You’re looking at a fully Autonomous Surface Vehicle, complete with a piggybacking 6-rotor UAV. It’s decked out in cameras, sonar sensors, laser rangefinders, high accuracy GPS-RTK tracking, an IMU, oh, and did we mention the autonomous 6-rotor UAV capable of taking off and landing on it?

It all started out as a simple experiment within ECHORD (the European Clearing House for Open Robotics Development), and since then it has become a fully funded project at UNINOVA, a Centre of Technology and Systems in Portugal.

The purpose of the mind-blowing robot team is to collect data of river environments — think of it as Google Maps 2.0 — which is almost an understatement for what it is capable of.

You seriously have to watch the video after the break.

Continue reading “RIVERWATCH: An Autonomous Surface-Aerial Marsupial Robot Team”

The Robot Operating System (ROS) 101

Ever heard about the Robot Operating System? It’s a BSD-licensed open-source system for controlling robots, from a variety of hardware. Over the years we’ve shared quite a few projects that run ROS, but nothing on how to actually use ROS. Lucky for us, a robotics company called Clearpath Robotics — who use ROS for everything — have decided to graciously share some tips and tricks on how to get started with ROS 101: An Introduction to the Robot Operating System.

The beauty of the ROS system is that it is made up of a series of independent nodes which communicate with each other using a publish/subscribe messaging model. This means the hardware doesn’t matter. You can use different computers, even different architectures. The example [Ilia Baranov] gives is using an Arduino to publish the messages, a laptop subscribed to them, and even an Android phone used to drive the motors — talk about flexibility!

It appears they will be doing a whole series of these 101 posts, so check it out — they’ve already released numéro 2, ROS 101: A Practical Example. It even includes a ready to go Ubuntu disc image with ROS pre-installed to mess around with on VMWare Player!

And to get you inspired for using ROS, check out this Android controlled robot using it! Or how about a ridiculous wheel-chair-turned-creepy-face-tracking-robot?

Agnes Roboknit: A Robot So Creepy It Even Has A Facebook Profile

agnes-and-andy

[Andy Noyes] is a British artist-inventor who recently debuted his latest project, Agnes Roboknit, at the 2013 Maker Faire U.K. Agnes is a humanoid robot who knits, scares small children, and occasionally looks around as if wondering why her maker condemned her to such a boring existence.

[Andy] wanted her to look human from a distance, but he also wanted to show off her mechanical parts upon closer inspection. She’s almost completely hand-made—down to her homemade gears driven by DC motors and her latex skin cast from plaster casts of real people. He originally planned to have her knit with real needles, but after discovering how difficult it was, [Andy] opted for a knitting loom instead.

He named her after his grandmother, Agnes, although he had hoped to accompany the name with a clever acronym (A.G.N.E.S.) like other classic robots from the 80’s. Stick around after the break to see a fascinating close-up of her weaving away on her loom. The motions are surprisingly simple, but simultaneously mesmerizing.

Continue reading “Agnes Roboknit: A Robot So Creepy It Even Has A Facebook Profile”