LEGO ROV Without A Tether

[Brane] built an underwater ROV from LEGO mindstorm parts. Look closely at this image and you should notice something missing. The tether that normally carries power and control lines from an ROV to the surface is missing. This is a wireless solution that lets him control the device using an Xbox controller.

The video after the break shows about five minutes of test drive footage. [Brane] has a big aquarium in which he can test the thing. Since he put it together as his senior engineering project at University it’s likely that this is a testing facility at the school. Here’s the little we know about the hardware: It’s using NXT Mindstorm parts to control the motors, with a sealed chamber for a battery. Connectivity is provided by an XBee module with an NXT adapter board called the NXTBee. A laptop with its own XBee module makes up the other end of communications. Right now [Brane] uses an Xbox controller connected to the laptop, but a standalone device would be easy to build by hacking the XBee and controller together directly.

Continue reading “LEGO ROV Without A Tether”

Robot Servo Control Using Smartphone Audio Jack

[Jim] has an old Android phone he’d like to use as a Robot brain. It’s got a lot of the things you’d want in a robot platform; WiFi, Bluetooth, a camera, an accelerometer, etc. But he needed some way to make the mobile, mobile. What he came up with is a chassis with servos that can be controlled by the phone’s audio port.

To start his adventure he crafted a square wave audio file in Audacity and then played it back on the Android music player. By monitoring the output on an oscilloscope he found the wave was well produced, with peaks of about 1V. With that in mind he designed a circuit using two transistors to amplify the signal, thereby creating a usable input for the servo motors. Each motor has one of these circuits connected to it, with the left and right channels from the audio jack driving them separately. In the clip after the break you can see he even wrote a simple Android app to extend the idea to a more usable level.

This is a similar technique as used by the recon robot we saw about a year ago.

Continue reading “Robot Servo Control Using Smartphone Audio Jack”

Roomba 4000 Teardown Ready For Your Doomba Build

In addition to getting a haircut, [Dino] spent his week editing an old video of him tearing down a Roomba 4000. These robots can be picked up for just a few dollars on eBay, making them one of the cheapest bodged up robotics dev platforms available.

After [Dino] goes over how to unscrew the cover and disassemble the Roomba 4000, he goes over the layout of the motherboard and takes a look at the sensors. The wheels on the Roomba are actually very neat pieces of technology with a very cool planetary gear system that is the perfect drive system for your next robot build.

There are a ton of ways to use the electronics in Roombas for a few interesting robotics projects. [Dino] built 2/3rds of a all terrain rocker bogie robot – just like the Curiosity rover – out of a Roomba, and a small two wheeled indoor robot using a Parallax Propeller. If you’re a redditor there’s always the possibility of building a Doomba, but we think [Patrick] has a better idea than a knife strapped to a vacuum cleaner.

As always, [Dino]’s vidia after the break.

Continue reading “Roomba 4000 Teardown Ready For Your Doomba Build”

Earthworm Robot Does What Earthworms Do

This earthworm robot comes to us from researchers at the Massachusetts Institute of Technology. It is made up of mostly soft parts and manages to inch its way along the ground.

The robot’s “skin” is made from a tube of polymer mesh that will hold up to an awful lot of bending and stretching. As with its biological namesake, locomotion is facilitated by circular muscles. In this case muscle wire, when stimulated with electricity, contracts around the mesh casing. By coordinating these contractions the robot is able to inch its way along.

But it’s not just the method of travel that makes this research project interesting. The bot is also extremely resistant to damage. The video after the break shows the device withstanding several whacks from a mallet and being stepped on by the team that created it.

Continue reading “Earthworm Robot Does What Earthworms Do”

‘Vortex-drive’ For Underwater ROV Propulsion

This is [Lee von Kraus’] new experimental propulsion system for an underwater ROV. He developed the concept when considering how one might adapt the Bristlebot, which uses vibration to shimmy across a solid surface, for use under water.

As with its dry-land relative, this technique uses a tiny pager motor. The device is designed to vibrate when the motor spins, thanks to an off-center weight attached to the spindle. [Lee’s] first experiment was to shove the motor in a centrifuge tube and give it an underwater whirl. He could see waves emanating from the motor and travelling outward, but the thing didn’t go anywhere. What he needed were some toothbrush bristles. He started thinking about how those bristles actually work. They allow the device to move in one direction more easily than in another. The aquatic equivalent of this is an angled platform that has more drag in one direction. He grabbed a bendy straw, using the flexible portion to provide the needed surface.

Check out the demo video after the break. He hasn’t got it connected to a vessel, but there is definitely movement.

Continue reading “‘Vortex-drive’ For Underwater ROV Propulsion”

Robot Cares For Grave Stones While Honoring The Dead

This robot was built to care for the graves and honor the dead in the Jewish tradition. It is called “Stoney” and was developed by [Zvika Markfeld] based on a concept by [Itamar Shimshony] who is working toward an MFA degree. The image above shows it in action as part of an installation; to our knowledge it has not been used for actual grave sites. But the concept is not a joke; it’s something that makes the observers think.

The base of the robot is an iRobot Roomba on top of which is built a platform for a robot arm. The arm has easy access to two palettes, one holds small stones, and the other flowers. There is also a small box which holds a rag. It navigates around the grave, placing stones, flowers, and using the rag and a water dispenser to symbolically clean the headstone. All of this is controlled by an Arduino Mega board which controls another Arduino running the arm, as well as the microcontroller in the Roomba.

The details of the ritual, as well as the components of the robot are well explained in the clip after the break.

Continue reading “Robot Cares For Grave Stones While Honoring The Dead”

Robotic Hand With Haptic Feedback

While I was at Heatsync Labs in Mesa Arizona, [Nate] mentioned that he was really proud of helping someone build a robotic hand. I have tracked down that project because it looked pretty cool.

[Macguyver603] built this robotic hand that is controlled by a glove with flex sensors. He was originally going to 3d print the structure for the hand but the availability of the laser cutter allowed him to create something a that would be a little more structurally sound. Haptic feedback is supplied by vibrating pager motors that are triggered by sensors in the tips of the robotic hand’s fingers.

The total cost of the project was roughly $240, and there’s unfortunately no video. It did, however, earn him second place at the state fair!