A magnifying glass is seen behind a small tea candle. The magnifying image is projecting the shadow of a column of heated air.

Finding Simpler Schlieren Imaging Systems

Perhaps the most surprising thing about shadowgraphs is how simple they are: you simply take a point source of light, pass the light through a the volume of air to be imaged, and record the pattern projected on a screen; as light passes through the transition between areas with different refractive indices, it gets bent in a different direction, creating shadows on the viewing screen. [Degree of Freedom] started with these simple shadowgraphs, moved on to the more advanced schlieren photography, and eventually came up with a technique sensitive enough to register the body heat from his hand.

The most basic component in a shadowgraph is a point light source, such as the sun, which in experiments was enough to project the image of an escaping stream of butane onto a sheet of white paper. Better point sources make the imaging work over a wider range of distances from the source and projection screen, and a magnifying lens makes the image brighter and sharper, but smaller. To move from shadowgraphy to schlieren imaging, [Degree of Freedom] positioned a razor blade in the focal plane of the magnifying lens, so that it cut off light refracted by air disturbances, making their shadows darker. Interestingly, if the light source is small and point-like enough, adding the razor blade makes almost no difference in contrast.

With this basic setup under his belt, [Degree of Freedom] moved on to more unique schlieren setups. One of these replaced the magnifying lens with a standard camera lens in which the aperture diaphragm replaced the razor blade, and another replaced the light source and razor with a high-contrast black-and-white pattern on a screen. The most sensitive technique was what he called double-pinhole schlieren photography, which used a pinhole for the light source and another pinhole in place of the razor blade. This could image the heated air rising from his hand, even at room temperature.

The high-contrast background imaging system is reminiscent of this technique, which uses a camera and a known background to compute schlieren images. If you’re interested in a more detailed look, we’ve covered schlieren photography in depth before.

Thanks to [kooshi] for the tip!

A man is shown behind a table, on which a glass apparatus like a distillation apparatus is set, with outlets leading into a large container in the center of the table, and from there to a pump.

Pulling A High Vacuum With Boiling Mercury

If you need to create a high vacuum, there are basically two options: turbomolecular pumps and diffusion pumps. Turbomolecular pumps require rotors spinning at many thousands of rotations per minute and must be carefully balanced to avoid a violent self-disassembly, but diffusion pumps aren’t without danger either, particularly if, like [Advanced Tinkering], you use mercury as your working fluid. Between the high vacuum, boiling mercury, and the previous two being contained in fragile glassware, this is a project that takes steady nerves to attempt – and could considerably unsteady those nerves if something were to go wrong.

Continue reading “Pulling A High Vacuum With Boiling Mercury”

The 19th Century Quantum Mechanics

While William Rowan Hamilton isn’t a household name like, say, Einstein or Hawking, he might have been. It turns out the Irish mathematician almost stumbled on quantum theory in the or around 1827. [Robyn Arianrhod] has the story in a post on The Conversation.

Famously, Newton worked out the rules for the motion of ordinary objects back in 1687. People like Euler and Lagrange kept improving on the ideas of what we call Newtonian physics. Hamilton produced an especially useful improvement by treating light rays and moving particles the same.

Continue reading “The 19th Century Quantum Mechanics”

Set Phone To… Hyperspectral

While our eyes are miraculous little devices, they aren’t very sensitive outside of the normal old red, green, and blue spectra. The camera in your phone is far more sensitive, and scientists want to use those sensors in place of expensive hyperspectral ones. Researchers at Purdue have a cunning plan: use a calibration card.

The idea is to take a snap of the special card and use it to understand the camera’s exact response to different colors in the current lighting conditions. Once calibrated to the card, they can detect differences as small as 1.6 nanometers in light wavelengths. That’s on par with commercial hyperspectral sensors, according to the post.

You may wonder why you would care. Sensors like this are useful for medical diagnostic equipment, analysis of artwork, monitoring air quality, and more. Apparently, high-end whisky has a distinctive color profile, so you can now use your phone to tell if you are getting the cheap stuff or not.

We also imagine you might find a use for this in phone-based spectrometers. There is plenty to see in the hyperspectral world.

Naturally Radioactive Food And Safe Food Radiation Levels

There was a recent recall of so-called ‘radioactive shrimp’ that were potentially contaminated with cesium-137 (Cs-137). But contamination isn’t an all-or-nothing affair, so you might wonder exactly how hot the shrimp were. As it turns out, the FDA’s report makes clear that the contamination was far below the legal threshold for Cs-137. In addition, not all of the recalled shrimp was definitely contaminated, as disappointing as all of this must be to those who had hoped to gain radioactive Super Shrimp powers.

After US customs detected elevated radiation levels in the shrimp that was imported from Indonesia, entry for it was denied, yet even for these known to be contaminated batches the measured level was below 68 Bq/kg. The FDA limit here is 1,200 Bq/kg, and the radiation level from the potassium-40 in bananas is around the same level as these ‘radioactive shrimp’, which explains why bananas can trigger radiation detectors when they pass through customs.

But this event raised many questions about how sensible these radiation checks are when even similar or higher levels of all-natural radioactive isotopes in foods pass without issues. Are we overreacting? How hot is too hot?

Continue reading “Naturally Radioactive Food And Safe Food Radiation Levels”

A piece of perovskite crystal

Perovskite Solar Cell Crystals See The Invisible

A new kind of ‘camera’ is poking at the invisible world of the human body – and it’s made from the same weird crystals that once shook up solar energy. Researchers at Northwestern University and Soochow University have built the first perovskite-based gamma-ray detector that actually works for nuclear medicine imaging, like SPECT scans. This hack is unusual because it takes a once-experimental lab material and shows it can replace multimillion-dollar detectors in real-world hospitals.

Current medical scanners rely on CZT or NaI detectors. CZT is pricey and cracks like ice on a frozen lake. NaI is cheaper, but fuzzy – like photographing a cat through steamed-up glass. Perovskites, however, are easier to grow, cheaper to process, and now proven to detect single photons with record-breaking precision. The team pixelated their crystal like a smartphone camera sensor and pulled crisp 3D images out of faint radiation traces. The payoff: sharper scans, lower radiation doses, and tech that could spread beyond rich clinics.

Perovskite was once typecast as a ‘solar cell wonder,’ but now it’s mutating into a disruptive medical eye. A hack in the truest sense: re-purposing physics for life-saving clarity.