Winamp Taken Down: Too Good For This Open Source World

If you picked today in your hackerspace’s sweepstake on when Winamp would pull their code repository, congratulations! You’re a winner! The source for the Windows version of the venerable music player was released on GitHub three weeks ago, and after some derision over its licence terms, a bunch of possible open source violations, and the inadvertent release of some proprietary third-party code, it’s been taken down. We’re sure that if you still have a burning desire to look at it then it won’t be too difficult to find a copy through your favorite search engine, leaving the question of what really just happened.

It’s fairly obvious that the owners of the code lacked some level of understanding of just what open source really is, based on their not-really-open licence and all those code leaks. They did back down on not allowing people to create forks, but it’s evident that they didn’t anticipate the reaction they got. So were they merely a bit clueless, or was it all just a publicity stunt involving a piece of software that’s now of more historical than practical interest? It’s possible we’ll never know, but the story has provided those of us sitting on the fence eating popcorn with some entertainment.

ANTIRTOS: No RTOS Needed

Embedded programming is a tricky task that looks straightforward to the uninitiated, but those with a few decades of experience know differently. Getting what you want to work predictably or even fit into the target can be challenging. When you get to a certain level of complexity, breaking code down into multiple tasks can become necessary, and then most of us will reach for a real-time operating system (RTOS), and the real fun begins. [Aleksei Tertychnyi] clearly understands such issues but instead came up with an alternative they call ANTIRTOS.

The idea behind the project is not to use an RTOS at all but to manage tasks deterministically by utilizing multiple queues of function pointers. The work results in an ultra-lightweight task management library targeting embedded platforms, whether Arduino-based or otherwise. It’s pure C++, so it generally doesn’t matter. The emphasis is on rapid interrupt response, which is, we know, critical to a good embedded design. Implemented as a single header file that is less than 350 lines long, it is not hard to understand (provided you know C++ templates!) and easy to extend to add needed features as they arise. A small code base also makes debugging easier. A vital point of the project is the management of delay routines. Instead of a plain delay(), you write a custom version that executes your short execution task queue, so no time is wasted. Of course, you have to plan how the tasks are grouped and scheduled and all the data flow issues, but that’s all the stuff you’d be doing anyway.

The GitHub project page has some clear examples and is the place to grab that header file to try it yourself. When you really need an RTOS, you have a lot of choices, mostly costing money, but here’s our guide to two popular open source projects: FreeRTOS and ChibiOS. Sometimes, an RTOS isn’t enough, so we design our own full OS from scratch — sort of.

A RISC-V LISP Compiler…Written In Lisp

Ah, Lisp, the archaic language that just keeps on giving. You either love or hate it, but you’ll never stop it. [David Johnson-Davies] is clearly in the love it camp and, to that end, has produced a fair number of tools wedging this language into all kinds of nooks and crannies. The particular nook in question is the RISC-V ISA, with their Lisp-to-RISC-V compiler. This project leads on from their RISC-V assembler by allowing a Lisp function to be compiled directly to assembly and then deployed as callable, provided you stick to the supported language subset, that is!

The fun thing is—you guessed it—it’s written in Lisp. In fact, both projects are pure Lisp and can be run on the uLisp core and deployed onto your microcontroller of choice. Because who wouldn’t want to compile Lisp on a Lisp machine? To add to the fun, [David] created a previous project targeting ARM, so you’ve got even fewer excuses for not being able to access this. If you’ve managed to get your paws on the new Raspberry Pi Pico-2, then you can take your pick and run Lisp on either core type and still compile to native.

The Lisp-Risc-V project can be found in this GitHub repo, with the other tools easy enough to locate.

We see a fair few Lisp projects on these pages. Here’s another bare metal Lisp implementation using AVR. And how many lines of code does it take to implement Lisp anyway? The answer is 42 200 lines of C, to be exact.

A stylized image of Haskell code from the article

Alphabet Soup: Haskell’s Single-Letter Naming Quirks

When you used punch cards or tape to write a computer program, brief variable names were the norm. Your compiler or assembler probably only allowed six letters, anyway. But times change, and people who, by habit, give array indices variable names like I, J, or K get a lot of grief. But [Jack Kelly] points out that for highly polymorphic languages like Haskell, you often don’t know what that variable represents anyway. So how are you supposed to name it? He provides a guide to one-letter variable names commonly used by Haskell developers and, sometimes, others.

Haskell’s conventions are particularly interesting, especially with i, j, and k, which are borrowed from mathematical tradition to signify indices or integers and passed on via Fortran. The article also highlights how m often refers to Monads and Monoidal values, while t can represent both traversables and text values. Perhaps more obscurely, p can denote profunctors and predicates, giving a glimpse into Haskell’s complex yet efficient type system. These naming conventions are not formal standards but have evolved into a grass-roots lexicon.

Of course, you can go too far. We see a lot of interesting and strange things written in Haskell, including this OpenSCAD competitor.

Supercon 2023: Thea Flowers Renders KiCad Projects On The Web

Last year’s Supercon, we’ve had the pleasure of hosting Thea [Stargirl] Flowers, who told us about her KiCanvas project, with its trials, its tribulations, and its triumphs. KiCanvas brings interactive display of KiCad boards and schematics into your browser, letting you embed your PCB’s information right into your blog post or online documentation.

Give the KiCanvas plugin a URL to your KiCad file, and it will render your file in the browser, fully on the fly. There’s no .jpg to update and re-upload, no jobs to re-run each time you find a mistake and update your board – your files are always up to date, and your audience is always able to check it out without launching KiCad.

Images are an intuitive representation for schematics and PCB files, but they’re letting hackers down massively. Thea’s KiCanvas project is about making our KiCad projects all that more accessible to newcomers, and it’s succeeded – nowadays, you can encounter KiCanvas schematic embeds in the wild on various hackers’ blogs. The Typescript code didn’t write itself, and neither was it easy – she’s brought a fair few war stories to the DesignLab stage.

A hacker’s passion to share can move mountains. Thea’s task was a formidable one, too – KiCad is a monumental project with a decades-long history. There are quite respectable reasons for someone to move this particular mountain – helping you share your projects quickly but extensively, and letting people learn about your projects without breaking a sweat.

Continue reading “Supercon 2023: Thea Flowers Renders KiCad Projects On The Web”

Winamp A Few Days Later: You Can Fork, And Watch For GPL Violations

A few days ago the source code for the popular Winamp music player was released into the world, with as we reported at the time, a licence that left a lot to be desired. Since then it seems some of the criticism has caught up with the company, for not only have they modified their terms to allow forking, they’ve reacted to a bunch of claimed GPL violations by removing offending files. Perhaps How-To-Geek are right in describing it all as an absolute mess.

The forking amendment means that with luck we’ll start seeing a few modified players descending from the Winamp code, and it seems that the GPL violations are more embarrassing technicalities than show-stoppers, but we have to wornder whether or not this makes for something with any more than historical interest. Perhaps its value stands in a lesson for corporate entities in how not to release their source, which sadly we expect will be taken by other organisations as an excuse not to do so.

If you’re following the Winamp source code saga you can read our coverage from when it came out. It will be interesting to see where this story goes.

Learn GPU Programming With Simple Puzzles

Have you wanted to get into GPU programming with CUDA but found the usual textbooks and guides a bit too intense? Well, help is at hand in the form of a series of increasingly difficult programming ‘puzzles’ created by [Sasha Rush]. The first part of the simplification is to utilise the excellent NUMBA python JIT compiler to allow easy-to-understand code to be deployed as GPU machine code. Working on these puzzles is even easier if you use this linked Google Colab as your programming environment, launching you straight into a Jupyter notebook with the puzzles laid out. You can use your own GPU if you have one, but that’s not detailed.

The puzzles start, assuming you know nothing at all about GPU programming, which is totally the case for some of us! What’s really nice is the way the result of the program operation is displayed, showing graphically how data are read and written to the input and output arrays you’re working with. Each essential concept for CUDA programming is identified one at a time with a real programming example, making it a breeze to follow along. Just make sure you don’t watch the video below all the way through the first time, as in it [Sasha] explains all the solutions!

Confused about why you’d want to do this? Then perhaps check out our guide to CUDA first. We know what you’re thinking: how do we use non-nVIDIA hardware? Well, there’s SCALE for that! Finally, once you understand CUDA, why not have a play with WebGPU?

Continue reading “Learn GPU Programming With Simple Puzzles”