Hardware Notifications For ISS Flybys

Since Sputnik launched in the 1950s, its been possible to look outside at night and spot artificial satellites orbiting with the naked eye. While Sputnik isn’t up there anymore, a larger, more modern satellite is readily located: the International Space Station. In fact, NASA has a program which will alert anyone who signs up when the ISS is about to fly overhead. A better alert, though, is this ISS notifier which is a dedicated piece of hardware that guarantees you won’t miss the next flyby.

This notifier is built around the Tokymaker, a platform aimed at making electronics projects almost painfully easy to learn. Connections to various modules can be made without soldering, and programming is done via a graphical interface reminiscent of Scratch. Using these tools, [jaime_lc98] designed a tool which flips up a tiny paper astronaut whenever the ISS is nearby. The software side takes advantage of IFTTT to easily and reliably control the servo on the Tokymaker.

The project pages goes into detail about how to set up IFTTT and also how to use the block-style language to program the Tokymaker. It’s pretty straightforward to get it up and running, relatively inexpensive, and looks like a great way to get the miniature hackers in your life excited about space. If they happen to learn a little something in the proces, well, we won’t tell them if you won’t. It might also be a good stepping stone on the way to other ISS-related hacks.

Artificial Intelligence Powers A Wasp-Killing Machine

At the time of publication, Hackaday is of the understanding that there is no pro-wasp lobby active in the United States or abroad. Why? Well, the wasp is an insect that is considered incapable of any viable economic contribution to society, and thus has few to no adherents who would campaign in its favor. In fact, many actively seek to defeat the wasp, and [Tegwyn☠Twmffat] is one of them.

[Tegwyn]’s project is one that seeks to destroy wasps and Asian Hornets in habitats where they are an invasive pest. To achieve this goal without harming other species, the aim is to train a neural network to detect the creatures, before then using a laser to vaporize them.

Initial plans involved a gimballed sentry-gun style setup. However, safety concerns about firing lasers in the open, combined with the difficulty of imaging flying insects, conspired to put this idea to rest. The current system involves instead guiding insects down a small tube at the entrance to a hive. Here, they can be easily imaged at close range and great detail, as well as vaporized by a laser safely contained within the tube, if they are detected as wasps or hornets.

It’s an exciting project that could serve as a good model of how to deal with invasive insect species in the wild. We’ve seen insects grace our pages before, too.  Video after the break. Continue reading “Artificial Intelligence Powers A Wasp-Killing Machine”

Arduboy In A Dreamcast VMU

The Arduboy is a tiny, credit-card sized sized video game console that you can build yourself. The Dreamcast VMU was also a tiny, pocketable video game system, but really that’s just where we stored our saves for Crazy Taxi. What do you get when you combine the two? [sjm] did just that, giving us an Arduboy tucked into a Dreamcast VMU.

The guts of the Arduboy is simply an ATMega32u4, the same chip found in many Arduinos, an I2C OLED, and a few other various electronics for USB, power, and battery protection. In short, it’s an easy circuit, and something just about anyone with the skills can build themselves. Since just anyone can get a PCB fabbed, and the Dreamcast already has nice silicone buttons built into the enclosure, it was a simple matter for [sjm] to create a Dreamcast VMU-shaped PCB with all the guts of an Arduboy. The only real difference is the size of the OLED — this one uses a 0.96″ 128×64 OLED, where the original used one with the same resolution but with a significantly larger size.

Yes, we’ve seen this same project before, but now thanks to the magic of the Hackaday Prize, it’s now in the running for the greatest hardware competition on the planet. You can check out the entire build video and a short demo after the break. Of course, this isn’t the first repurposing of the Arduboy circuit, we’ve seen a flex circuit version, and a version with a crank like the Playdate developed by Teenage Engineering and Panic.

Continue reading “Arduboy In A Dreamcast VMU”

The Proof Is In The Box

Making bread dough is simple — it’s just flour and water, with some salt and yeast if you want to make things easy on yourself. Turning that dough into bread is another matter entirely. You need to punch that dough down, you need to let it rise, and you need to knead it again. At home, you’re probably content with letting the dough rise on the kitchen counter, but there’s a reason your home loaf doesn’t taste like what you would get at a good bakery. A bakery has a proofer, or a box that lets dough rise at a temperature that would be uncomfortable for humans, but perfect for yeast.

The leavening cell is a DIY proofing box that keeps dough at a steady 26° C to 28° C, the perfect temperature for making bread, pizza dough, and even yogurts. [vittorio] made this and the results look great.

The design of this build is simple enough and made out of 20×20 aluminum profiles shaped into a cubic frame. The outside of this box is 6mm thick wooden panels coated on the inside with a heat-reflective insulating mesh. Inside of that is a frame of metal mesh to which a six-meter long cable heating element is attached. This heating element is controlled via a thermostat with a probe temperature sensor on a timer. No, it’s not very complicated but the entire idea of a proofer is to have a slightly warm box.

You can check out the promo video for the Leavening Cell below.

Continue reading “The Proof Is In The Box”

LEGO-Based Robot Arm With Motion Planning

Robotic arms have found all manner of applications in industry. Whether its welding cars, painting cars, or installing dashboards in cars, robotic arms can definitely do the job. However, you don’t need to be a major automaker to experiment with the technology. You can build your own, complete with proper motion planning, thanks to Arduino and ROS.

Motion planning is important, as it makes working with the robotic arm much easier. Rather than having to manually specify the rotation of each and every joint for every desired movement, instead mathematics is used to figure everything out. End effectors can be moved, and software will figure out the necessary motions required to achieve the end results. This functionality is baked into Robot Operating System (ROS) and proves useful to this project.

The construction of this particular arm is impressive in its simplicity, too. It has 7 degrees of freedom, which is plenty to play with. The arm is built out of LEGO Technic components, which are attached to the servos with the addition of some 3D printed components. It’s a smart and simple way to integrate the servos into the LEGO world, and we’re surprised we don’t see this more often.

Robotic arms remain an area of active research; there are even efforts to allow them to self-correct in the event of damage. Video after the break.

Continue reading “LEGO-Based Robot Arm With Motion Planning”

A PDP Laptop, For Various Definitions Of A Laptop

Digital Equipment Corp.’s PDP-11 is one of the most important computers in history. It’s the home of Unix, although that’s arguable, and it’s still being used in every application, from handling nuclear control rods to selling Ed Sheeran tickets on Ticketmaster. As the timeline of PDP-11 machines progressed, the hardware did as well, and by the time the PDP was eclipsed by the VAXxen, there were PDP-11s on a single chip. The Eastern Bloc took notice and produced their own PDP-11 on a chip. This is the 1801-series CPU, and like most soviet electronics from the Cold War, they’re readily available on eBay.

[SHAOS] has an interesting project in mind for this PDP-on-a-chip. It’s a standalone computer built around the Soviet re-implementation of the PDP-11, built into a form factor that could be described as a single board computer.

This project is the outgrowth of [SHAOS]’ project for last year’s Hackaday Prize, the PDPii. This was a computer built around a backplane that replicated the PDP-11 using a KR1801VM2 CPU, the Soviet not-a-clone clone of the PDP-11. This project is basically a PDP-11/03 system, except it was made in this century, and you can put it in any computer case, with bonus points awarded for RGB lighting and liquid cooling.

This year’s project, the PDPjr, eschews standardization to something that is far more unique. This build is more or less a single board computer with a character LCD display and a real keyboard. Think of this as the PDP-11 equivalent of the TRS-80 Model 100, a machine widely regarded as being the first laptop.

There’s still a lot of work to go, but [SHAOS] has written a ‘Hello World’ for this chip, and is getting those words to display on the character LCD. That’s a great first step and we can’t wait to see where this project ends up.

Handheld Game Console Puts Processing Power In The Cartridge

With the proliferation of cheap screens for use with microcontrollers, we’ve seen a matching proliferation in small handheld gaming projects. Pick your favourite chip, grab a screen off the usual suspects, add some buttons and you’re ready to go. [bobricius] has put a unique spin on this, with an unconventional cartridge-based build.

The main body of the handheld is constructed from attractive black and gold PCBs, and features a screen, some controls and an on/off switch. There’s also a microSD socket is on the board, which interfaces with cartridges which carry the microcontroller. Change the cart, and you can change the game.

[bobricius] has developed carts for a variety of common microcontroller platforms, from the Attiny85 to the venerable ATmega328. As the microSD slot is doing little more then sharing pins for the screen and controls, it’s possible to hook up almost any platform to the handheld. There’s even a design for a Raspberry Pi cart, just for fun.

It’s an entertaining take on the microcontroller handheld concept, and we can’t wait to see where it goes next. It reminds us of the Arduboy, which can even do 3D graphics if you really push it. Video after the break.

Continue reading “Handheld Game Console Puts Processing Power In The Cartridge”