To Test A (Smart) LED

Adding LEDs to a project used to be enough to make it cool. But these days, you need arrays of addressable multi-color LEDs, and that typically means WS2812B or something similar. The problem is that while it was pretty easy to test garden-variety LEDs, these devices can be a bit harder to troubleshoot. [Gokux] has the answer, as you can see in the video below.

Testing these was especially important to [Gokux] because they usually swipe the modules from other modules or LED strips. The little fixture sends the correct pulses to push the LED through several colors when you hold it down to the pads.

However, what if the LED is blinking but not totally right? How can you tell? Easy, there’s a reference LED that changes colors in sync with the device under test. So, if the LEDs match, you have a winner. If not… well, it’s time to desolder another donor LED.

This is one of those projects that you probably should have thought of, but also probably didn’t. While the tester here uses a Xiao microcontroller, any processor that can drive the LEDs would be easy to use. We’d be tempted to breadboard the tester, but you’d need a way to make contact with the LED. Maybe some foil tape would do the trick. Or pogo pins.

Continue reading “To Test A (Smart) LED”

Flow chart containing directions on how to determine if you should use this toolkit as a resident, business owner, civic activist, or government official

Hackable Cities

There are many ways to hack the world. Graduate students at Parsons The New School for Design developed a guide for hacking the biggest piece of technology humans have developed – the city.

One of the things we love here at Hackaday is how hacking gives us a tool to make the world a better place for ourselves and those around us. Even if it’s a simple Arduino-based project, we’re (usually) trying to make something better or less painful.

Taking that same approach of identifying a problem, talking to the end user, and then going through design and execution can also apply to projects at a larger scale. Even if you live in an already great neighborhood, there’s likely some abandoned nook or epic vista that could use some love to bring people out from behind their screens to enjoy each other’s company. This guide walks us through the steps of improving public space, and some of the various ways to interact with and collate data from the people and organizations that makeup a community. This could work as a framework for growing any nascent hacker or makerspaces as well.

Hacking your neighborhood can include anything: a roving playground, a light up seesaw, or a recycling game. If you’ve seen any cool projects in this regard, send them to the tipsline!

Handheld Compass CNC Lets Teensy Do The Driving

If somebody asked you to visualize a CNC router, you’d probably think of some type of overhead gantry that moves a cutting tool over a stationary workpiece. It’s a straightforward enough design, but it’s not without some shortcomings. For one thing, the scale of such a machine can quickly become an issue if you want to work on large pieces.

But what if you deleted the traditional motion system, and instead let the cutting tool roam freely? That’s the idea behind the open source Compass Handheld CNC. Looking a bit more like a combat robot than a traditional woodworking tool, the Compass tracks its movement over the workpiece using a Teensy 4.1 microcontroller and four PMW3360 optical flow sensors. With a pair of handles that look like a flight yoke and a display that shows the router’s current position versus where it should be, the user can “drive” the tool to cut or carve the desired design.

Admittedly, the Compass doesn’t pack quite the same punch as a more traditional setup. Rather than a beefy spindle motor or a full-sized consumer router clamped up in the gantry, the Compass uses a Dremel 3000. It’s fine for routing out an engraving and other fine work, but you wouldn’t want to use it for cutting thick stock. To help keep the work area clear and prevent dust and chips from jamming up the works, the 3D printed body for the tool includes a connection for a dust collection system.

If this all seems familiar, you may be remembering a tool we first covered nearly a decade ago — the Shaper Origin. That router, which is still on the market incidentally, utilizes optical tracking and fiducial markers to keep track of its position. We’d be interested in seeing how well the Compass compares over large distances without similar reference points.

Tricked Out Miter Fence Has All The Features

“World’s best” is a mighty ambitious claim, regardless of what you’ve built. But from the look of [Marius Hornberger]’s tricked-out miter fence, it seems like a pretty reasonable claim.

For those who have experienced the torture of using the standard miter fence that comes with machine tools like a table saw, band saw, or belt sander, any change is likely to make a big difference in accuracy. Miter fences are intended to position a workpiece at a precise angle relative to the plane of the cutting tool, with particular attention paid to the 90° and 45° settings, which are critical to creating square and true joints.

[Marius] started his build with a runner for the T-slot in his machine tools, slightly undersized for the width of the slot but with adjustment screws that expand plastic washers to take up the slack. An aluminum plate equipped with a 3D printed sector gear is attached to the runner, and a large knob with a small pinion mates to it. The knob has 120 precisely positioned slots in its underside, which thanks to a spring-loaded detent provide positive stops every 0.5°. A vernier scale also allows fine adjustment between positive stops, giving a final resolution of 0.1°.

Aside from the deliciously clicky goodness of the angle adjustment, [Marius] included a lot of thoughtful touches. We particularly like the cam-action lock for the angle setting, which prevents knocking your fine angle adjustment out of whack. We’re also intrigued by the slide lock, which firmly grips the T-slot and keeps the fence fixed in one place on the machine. As for the accuracy of the tool, guest meteorologist and machining stalwart [Stefan Gotteswinter] gave it a thumbs-up.

[Marius] is a veteran tool tweaker, and we’ve featured some of his projects before. We bet this fence will see some use on his much-modified drill press, and many of the parts for this build were made on his homemade CNC router.

Continue reading “Tricked Out Miter Fence Has All The Features”

Vacuum Forming With 3D Printed Moulds And Sheets

Vacuum forming is perhaps one of the less popular tools in the modern maker arsenal, something which surprises us a bit because it offers many possibilities. We’ve created our own vacuum forms on 3D printed moulds for ages, so it’s interesting to see [Pisces Printing] following the same path. But what you might not realize at first is that the vacuum forming sheets themselves are also 3D printed.

The full video is below the break, and in it he details making a mould from PETG, and in particular designing it for easy release. The part he’s making is a belt guard for a table top lathe, and the PETG sheet he’s forming it from is also 3D printed. He makes the point that it’s by no means perfect, for example he shows us a bit of layer separation, but it seems promising enough for further experimentation.  His vacuum forming setup seems particularly small, which looks as though it makes the job of making a sheet somewhat simpler.

The cost of a vacuum forming sheet of whichever polymer is hardly high, so we can’t see this technique making sense for everyday use. But as we’ve seen in previous experiments, the printed sheets so make it easy to add color and texture to the final product, which obviously adds some value to the technique.

Continue reading “Vacuum Forming With 3D Printed Moulds And Sheets”

DaVinci’s New Threads

Last year, we saw [How To Make Everything’s] take on [DaVinci’s] machine for cutting threads. However, they stopped short of the goal, which was making accurate metal screw threads. After much experimentation, they have a working solution. In fact, they tried several different methods, each with varying degrees of success.

Some of the more unusual methods included heating a bar red hot and twisting it, and casting a screw out of bronze. The last actually worked well with a normal screw as the mold, although presumably, a good wood or wax shape would have resulted in a workable mold, too.

Continue reading “DaVinci’s New Threads”

[Quinn Dunki] Makes A Screw Shortener Fit For Kings

It’s common problem when you’re building anything with screws: this one is too long, this one is too short. While she can’t teach you how to fix the latter, [Quinn Dunki] has made herself an absolutely deluxe screw shortening jig. And while that’s cool and all, the real value here is the journey; watching over [Quinn]’s shoulders while she’s in the machine shop is always illuminating.

First off, she starts with her old jig, which frankly makes us want one. It’s a short piece of aluminum angle stock with threaded holes in it. You thread the screw in as far as you want, and use the edge as a cutting guide. Very nice!

But aluminum threads wear out quickly so it works if you’re shortening dozens of screws, but gets wonky when you need to cut hundreds. The new jig is made out of steel, and has a slit that clamps the threads in place so she doesn’t have to hold the tiny screws with her other hand while sawing.

This video is, on the surface, about making an improved tool out of steel. But it’s the tips along the way that make it worth your watch. For instance “deburr early and often” is a recurring leitmotif here: it keeps the extra bits that form along any cut from messing up edge finding or vise registration. And yeah, she deburrs after every operation.

There are mistakes, and lessons learned along the way. We’re not going to spoil it all. But in the end, it’s a sweet tool that we’ve never seen before.

If you haven’t read [Quinn]’s series on machine tools that she wrote for us, it’s a treasure trove of machining wisdom.

Continue reading “[Quinn Dunki] Makes A Screw Shortener Fit For Kings”