Augmented Laser Cutter Removes Design Technology Barriers

augmented laser

Laser cutters, 3D printers, CNC routers — they’re all great technology in the right hands, but unfortunately the learning curve sometimes puts would-be makers at a distance.  [Anirudh] from MIT’s Media Lab is attempting to break down at least one of those barriers with his augmented laser cutter system called, Clearcut.

The system consists of a webcam, a projector, and a semi transparent work space on top of the laser cutter. By placing objects on the surface, the webcam can identify them, duplicate them with the projector, and then laser engrave them. In addition to the “copy and paste” idea of this, you can also use infrared emitting pens to physically draw your design on the work surface to be engraved. It starts to bridge the gap between complex CAD and pencil and paper, something anyone is capable of.

Continue reading “Augmented Laser Cutter Removes Design Technology Barriers”

GPIB To USB, With A Python API

If you’re not so daft as to think Arduino-based oscilloscopes and multimeters are actually useful for all but the simplest tests and measurements, you just might have some big iron sitting around your workbench from the likes of HP, or Tektronix. You might have noticed a strange port on the back of these machines, labeled GPIB or IEEE-488. This is the standard interface for these devices, and if you’ve ever priced out a USB to IEEE-488 converter, you can see why [Steven] thought it would be cheaper to build his own.

This build is an update to an earlier version we saw a few years ago. Since then, [Steven] has taken some advice from the community and replaced a bunch of resistors with proper GPIB line driver ICs, and generally cleaned up the firmware.

Because a USB to GPIB adapter is only one small part of the tools necessary to connect these old measurement devices to a modern computer, [Steven] has also been working on InstrumentKit. It’s a Python library that takes all the standardized instrument commands and wraps them up in an easy to use API. You can check out the docs for InstrumentKit here, or just look through the board files and firmware on the Github

Wind Tunnel Testing Now Available To The Common Man

DIY Wind Tunnel

If you are in the market for a DIY wind tunnel the folks over at sciencebuddies.org have got you covered. They have done a great job documenting how they built their own wind tunnel. Most of the structure is made of plywood with the test chamber is made of plexi-glass so that the operator can visually observe what is happening during a test. A common gable-mount fan provides the air flow, you may have one installed in your attic to keep it cool. The only non-widely available components are the force sensors that feed data to a computer for logging.

Continue reading “Wind Tunnel Testing Now Available To The Common Man”

Wood Sphere made with circular saw

Circular Saw Cuts Balls… Wooden Balls, Don’t Worry

Ever wonder how wood spheres are made? Normally they are made on a wood lathe with some fancy jigs and fixtures. [Izzy Swan] set out to bring wood sphere manufacturing to the masses by designing an inexpensive machine that uses a standard circular saw to carve a block of wood into a sphere.

Here’s how it works: a piece of wood is held in a wood fixture and spun using a hand drill. The fixture and drill are mounted to a wooden ring that rotates about a perpendicular axis. The user manually moves the entire assembly back and forth about that second axis while spinning the drill. Meanwhile, a circular saw is moved closer and closer to the soon-to-be-sphere, nibbling away little by little. After most of the material has been cut from the block of wood, it is removed from the fixture and spun 90 degrees to cut the two remaining nubs. The end result is a pretty nice looking sphere.

Continue reading “Circular Saw Cuts Balls… Wooden Balls, Don’t Worry”

Rechargeable Work Lamp Brightens Your Night

Portable power station has DC, AC and Light on board.

Most of us tinkerers will at some point find ourselves needing electrical power in a remote area. Cordless tools are an option, but what if you need more than that? [Garage Monkey San] set out to solve this problem by creating a portable power station that has on-board AC outlets, 12v and 5vdc outputs and an integrated spot light.

This project is housed in a plastic ammo case that’s large enough to contain all of the necessary parts and has a convenient carrying handle. The 12vdc sealed lead acid battery power source is kept topped off by a car battery float charger. Light is provided by an LED off road fog lamp mounted to the top of the case that has a small appetite for power, ensuring long battery life. An easy addition at this point was a 12v car accessory outlet which only adds to the versatility of the project.

Continue reading “Rechargeable Work Lamp Brightens Your Night”

Circular Saws In The Kitchen, Good Idea Or Best Idea?

Kitchen centrifuge using a circular saw

[Mike Warren] was contemplating risky but exciting projects he could do when he came up with this magnificent contraption. A centrifuge made out of an old circular saw!

First question — why? Well if you’re a foody or you enjoy the study of molecular gastronomy, bringing a centrifuge to the kitchen can allow for some more technical dishes. It suddenly becomes possible to separate food based on its density, just like how it works in the lab. Practical applications for super fancy dishes — we’re not too sure — but it involves relatively unsafe power tools and food so we felt obliged to share it!

Let’s start off with the generic warning — in fact, [Mike] states this before the Instructable begins:

Do not replicate this project, it is incredibly dangerous!

The project makes use of an old corded circular saw, a few salad bowls, some threaded rod, a few nuts, some binder clips and some metal plates to hold the plastic test tubes. At 4900RPM (the speed of his saw),he’s calculated his G-Force to be around 1879G’s. Holy cow. A person passes out at around 10Gs, and a bullet fired from a typical handgun is well over 50,000 — on the extreme end of things, a professional lab ultra-centrifuge can hit over 300,000.

These all of course pale by comparison to the Large Hadron Collider, which can accelerate protons at approximately 190,000,000G’s! And to conclude, this is what happens when lab centrifuges blow up. Don’t do it — but do watch the following video and enjoy!

Continue reading “Circular Saws In The Kitchen, Good Idea Or Best Idea?”

Finally, A Desktop CNC Machine With A Real Spindle

While cheap hobby CNC mills and routers are great machines that allow you to build things a 3D printer just can’t handle, they do have their limitations. They’re usually powered by a Dremel or other rotary tool, so speed control of the spindle via Gcode is nigh impossible. They’re also usually built with a piece of plywood as the bed – cheap, but not high on repeatability. The Nomad CNC mill fixes these problems, and manages to look good and be pretty cheap, to boot.

Instead of using a Dremel or other rotary tool to cut materials, the Nomad team is using a brushless DC motor connected to a real spindle. With a few certain motors, this allows for closed loop control of the spindle;  Sending S4000 Gcode to the mill will spin the spindle at 4000 RPM, and S6000 runs the spindle at 6000 RPM, whether it’s going through foam or aluminum. This is something you just can’t do with the Dremel or DeWalt rotary tools found in most desktop mills and routers.

Along with a proper spindle, the Nomad also features homing switches, a tool length probe, and a few included fixtures that make two-sided machining – the kind you need it you’re going to machine a two-layer PCB – possible, and pretty simple, too. The softwares controlling the mill are Carbide Motion and MeshCAM, a pretty popular and well put together CNC controller. Of course the mill itself speaks Gcode, so it will work with open source CNC software.

It’s all a very slick and well put together package. Below you can find a video of the Nomad milling out a Hackaday logo.

Continue reading “Finally, A Desktop CNC Machine With A Real Spindle”