Penguin Binoculars

Happy Meal Hack Produces A Google Cardboard Test

Ever since Google Cardboard came out, [Julian Jackson] had been meaning to give it a shot. Affordable virtual reality? Who wouldn’t! But, he never got around to it — until one day he was sitting in McDonald’s with his son, explaining to him how the latest Happy Meal toy worked — it was a pair of penguin binoculars.

Fast forward past Thanksgiving and Black Friday and [Julian’s] son had completely forgotten about the McDonald’s toy in all the excitement, so [Julian] asked if he could have it. His son was mildly confused, but curious also, so he let his dad take his toy.

After attempting to dismantle it with a screw driver to get at the lenses, [Julian] carefully calculated the best place to simply break it without damaging them. With the precision of a heart surgeon he swung back his trusty hammer…  Continue reading “Happy Meal Hack Produces A Google Cardboard Test”

Second Life world thru Oculus Rift

Ask Hackaday: What Is The Future Of Virtual Reality?

Most of us have heard of Second Life – that antiquated online virtual reality platform of yesteryear where users could explore, create, and even sell content.  You might be surprised to learn that not only are they still around, but they’re also employing the Oculus Rift and completely redesigning their virtual world. With support of the DK2 Rift, the possibilities for a Second Life platform where users can share and explore each other’s creations opens up some interesting doors.

Envision a world where you could log on to a “virtual net”, put on your favorite VR headset and let your imagination run wild. You and some friends could make a city, a planet…and entire universe that you and thousands of others could explore. With a little bit of dreaming and an arduino, VR can bring dreams to life.

Continue reading “Ask Hackaday: What Is The Future Of Virtual Reality?”

DIY Head Mounted Display Based On Movie Based On Stephen King Story

Ever since [will1384] watched “The Lawnmower Man” as a wee lad, he’s been interested in virtual reality. He has been messing around with it for years and even had a VictorMaxx Stuntmaster, one of the first available head mounted displays. Years later, the Oculus Rift came out and [will1384] wanted to try it out but the $350 price tag put it just out of his price range for a discretionary purchase. He then did what most of us HaD readers would do, try building one himself, and with a goal for doing it for around $100.

The main display is a 7″ LCD with a resolution of 1024×600 pixels and has a mini HDMI input. Some DIY head mounted display projects out on the ‘web use ski goggles or some sort of elastic strap to hold the display to the wearer’s head. [will1384] took a more industrial approach, literally. He used the head mounting system from a welding helmet. This not only has an adjustable band but also has a top strap to prevent the entire contraption from sliding down. Three-dimensional parts were printed out to secure the LCD to the welding helmet parts while at the same time creating a duct to block out external light.

diyhmd-lenses

Inside the goggles are a pair of 5x Loupe lenses mounted between the user’s eyes and the LCD screen. These were made to be adjustable so that the wearer can dial them in for the most comfortable viewing experience. The remote mounted to the top strap may look a little out-of-place but it is actually being used to capture head movement. In addition to a standard wireless remote, it is also an air mouse with internal gyroscopes.

Seeing The World Through Depth Sensing Cameras

The Oculus Rift and all the other 3D video goggle solutions out there are great if you want to explore virtual worlds with stereoscopic vision, but until now we haven’t seen anyone exploring real life with digital stereoscopic viewers. [pabr] combined the Kinect-like sensor in an ASUS Xtion with a smartphone in a Google Cardboard-like setup for 3D views the human eye can’t naturally experience like a third-person view, a radar-like display, and seeing what the world would look like with your eyes 20 inches apart.

[pabr] is using an ASUS Xtion depth sensor connected to a Galaxy SIII via the USB OTG port. With a little bit of code, the output from the depth sensor can be pushed to the phone’s display. The hardware setup consists of a VR-Spective, a rather expensive bit of plastic, but with the right mechanical considerations, a piece of cardboard or some foam board and hot glue would do quite nicely.

[pabr] put together a video demo of his build, along with a few examples of what this project can do. It’s rather odd, and surprisingly not a superfluous way to see in 3D. You can check out that video below.

Continue reading “Seeing The World Through Depth Sensing Cameras”

RomoCart, Indoor Robot Racing

Your Living Room Becomes Next Mario Kart Course

[Ken] likes his living room and he is on a continual mission to make it more interesting. Recently, he has made a giant leap forward with a racing game project he calls RomoCart. Think of it as a partially-physical game of Mario Kart. You are able to race others around a track while still having the ability to fire projectiles or drop defensive measures in efforts to win the race!

First, lets talk about the hardware required. The racers are standard Romo educational robots. Wireless game controllers provide the means for the drivers to control the Romos. Hanging from the ceiling is an Xtion motion sensing camera and a video projector, both pointed down at the floor.

To get started, the system scans the floor and determines a race course based on the room layout and any physical objects in the vicinity. A course is then generated to avoid the obstacles and is projected onto the floor. At this point it would still be a pretty neat project but [Ken] went way further. The ceiling-mounted camera tracks the motion of the Romos driving around the track and the video projector displays a smoke trail behind each racer. Randomly displayed on the track are items to help you win the race, including an acceleration item that makes your Romo go twice as fast for a short time.

Have a tailgater? No problem, just pick up some bananas and drop them on the track. If a following competitor drives into one, they spin out. If you want to get super rude, pick up some missiles and fire them at the racers ahead of you. A direct hit will stop them right in their tracks.

[Ken] is no stranger to HaD, he’s had a few of his projects covered here before. Check out his Tempescope, Moving Window and his Autonomous Lighting System.

Check out a video of the racing in action after the break. It is amazing!

Continue reading “Your Living Room Becomes Next Mario Kart Course”

Leap motion controller plus oculus rift

Interacting With Virtual Reality Brings Us Even Closer To A Real Holodeck

One of our readers has been playing around with virtual reality lately, and has come up with a pretty cool beta run of his research — virtual interaction using your hands.

Using an Oculus Rift, the Leap Motion controller and a beta run of Unity 4.6, [Tomáš Mariančík] put together a test environment for physical interaction. The Leap Motion controller is capable of tracking your fingers with extremely high detail, which allows him to create a pair of virtual hands inside the test environment that almost perfectly mimic his movements. The hack here is making it all work together.

In the following demo he shows off by interacting with holographic menus, grabbing body parts off of anatomically correct human being (thanks to Unity3D), and manipulating his environment.

Continue reading “Interacting With Virtual Reality Brings Us Even Closer To A Real Holodeck”

Virtual Reality Expands Into The World Of Rollercoasters With ‘The Augmented Thrill Ride Project’

A rollercoaster company in Germany called Mack Rides joined forces with a team of virtual reality developers in the spring of 2014 to create an experience like no other.

The idea came from [Thomas], a professor at the University of Applied Sciences Kaiserslautern who was working in the department of Virtual Design at the time. The thought of extending a real rollercoaster ride with an Oculus Rift was an intriguing one, so he approached Mack Rides with the experiment, and the ground-breaking research began.

Hundreds of tests were done over the following weeks and months, which provided insight into how we perceive time and space while inside VR. This led to some interesting discoveries. For one, the VR track inside the Rift could be more complex than the real one. This meant that the directions could be contorted into different angles without the user feeling much of a difference. Knowing this, the developers were able to unfold/extend the track well beyond what was possible in real life.

Another epiphany had to do with the rails, which actually didn’t have to be present in VR at all. In fact, it was better if the tracks weren’t there because the experience was much more exciting not knowing which way the ride was suddenly going to take. This made things exponentially more surprising and compelling.

By far the most startling revelation was the reduction in dizziness and motion sickness during the tests. This was attributed to the complex synchronization that the mind goes through when melding together g-forces and the actual rollercoaster rides with the virtual ones displayed inside the Oculus Rift.

Continue reading “Virtual Reality Expands Into The World Of Rollercoasters With ‘The Augmented Thrill Ride Project’”