The 6GHz Band Opens In The US

On December 11th, the FCC announced that the band around 6GHz would be open to “very low-power devices.” The new allocation shares space with other devices already using these frequencies. The release mentions a few limitations over the 350 MHz band (broken into two segments). First, the devices must use a contention-based protocol and implement transmit power control. The low-power devices may not be part of a fixed outdoor infrastructure.

The frequencies are 6.425-6.525 GHz, 6.875-7.125 GHz and the requirements are similar to those imposed on 802.11ax in the nearby U-NII-5 and U-NII-7 bands.

Continue reading “The 6GHz Band Opens In The US”

RFID From First Principles And Saving A Cat

[Dale Cook] has cats, and as he readily admits, cats are jerks. We’d use stronger language than that, but either way it became a significant impediment to making progress with an RFID-based sensor to allow his cats access to their litterbox. Luckily, though, he was able to salvage the project enough to give a great talk on RFID from first principles and learn about a potentially tragic mistake.

If you don’t have 20 minutes to spare for the video below, the quick summary is that [Dale]’s cats are each chipped with an RFID tag using the FDX-B protocol. He figured he’d be able to build a scanner to open the door to their playpen litterbox, but alas, the read range on the chip and the aforementioned attitude problems foiled that plan. He kept plugging away, though, to better understand RFID and the electronics that make it work.

To that end, [Dale] rolled his own RFID reader pretty much from scratch. He used an Arduino to generate the 134.2-kHz clock signal for the FDX-B chips and to parse the returned data. In between, he built a push-pull driver for the antenna coil and an envelope detector to pull the modulated data off the carrier. He also added a low-pass filter and a comparator to clean up the signal into a nice square wave, which was fed into the Arduino to parse the Differential Manchester-encoded data.

Although he was able to read his cats’ chips with this setup, [Dale] admits it was a long road compared to just buying a Flipper Zero or visiting the vet. But it provided him a look under the covers of RFID, which is worth a lot all by itself. But more importantly, he also discovered that one cat had a chip that returned a code different than what was recorded in the national database. That could have resulted in heartache, and avoiding that is certainly worth the effort too.

Continue reading “RFID From First Principles And Saving A Cat”

Random Wire Antenna Uses No Wire

Ideally, if you are going to transmit, you want a properly-tuned resonant antenna. But, sometimes, it isn’t practical. [Ham Radio Rookie] knew about random wire antennas but didn’t want a wire antenna. So, he took carbon fiber extension poles and Faraday tape and made a “random stick” antenna. You can check it out in the video below.

We aren’t sure what normal people are doing with 7-meter-long telescoping poles, but — as you might expect — the carbon fiber is not particularly conductive. That’s where the tape comes in. Each section gets some tape, and when you stretch it out, the tape lines up.

Continue reading “Random Wire Antenna Uses No Wire”

Hacker Chris Edwards demonstrating his wireless Amiga

Retro Wi-Fi On A Dime: Amiga’s Slow Lane Connection

In a recent video, [Chris Edwards] delves into the past, showing how he turned a Commodore Amiga 3000T into a wireless-capable machine. But forget modern Wi-Fi dongles—this hack involves an old-school D-Link DWL-G810 wireless Ethernet bridge. You can see the Amiga in action in the video below.

[Chris] has a quirky approach to retrofitting. He connects an Ethernet adapter to his Amiga, bridges it to the D-Link, and sets up an open Wi-Fi network—complete with a retro 11 Mbps speed. Then again, the old wired connection was usually 10 Mbps in the old days.

To make it work, he even revived an old Apple AirPort Extreme as a supporting router since the old bridge didn’t support modern security protocols. Ultimately, the Amiga gets online wirelessly, albeit at a leisurely pace compared to today’s standards. He later demonstrates an upgraded bridge that lets him connect to his normal network.

We’ve used these wireless bridges to put oscilloscopes and similar things on wireless, but newer equipment usually requires less work even if it doesn’t already have wireless. We’ve also seen our share of strange wireless setups like this one. If you are going to put your Amgia on old-school networking, you might as well get Java running, too.

Continue reading “Retro Wi-Fi On A Dime: Amiga’s Slow Lane Connection”

WiFi Meets LoRa For Long Range

What do you get when you cross WiFi and LoRa? Researchers in China have been doing this, and they call the result WiLo. They claim to get reliable connections over about half a kilometer. Typical WiFi runs 40 to 60 meters, barring any Pringle’s cans or other exotic tricks.

According to [Michelle Hampson] writing in IEEE Spectrum, the researchers manipulated Wi-Fi’s OFDM multiplexing to emulate LoRa’s chirp-spreading signal. The advantage is that existing WiFi hardware can use the protocol to increase range.

Continue reading “WiFi Meets LoRa For Long Range”

This Bluetooth GATT Course Is A Must Watch

Bluetooth is a backbone technology for innumerable off-the-shelf and hacker devices. You should know how to work with it – in particular, nowadays you will certainly be working at the Bluetooth GATT (Generic Attribute) layer. This two-part project by [V. Hunter Adams] of Cornell fame spares no detail in making sure you learn Bluetooth GATT for all your hacking needs – not only will you find everything you could want to know, you also get example GATT server and client application codebases to use in your projects, designed to work with the commonly available Pi Pico W!

What’s better than a visual demonstration? The video below shows the GATT server running on a Pico W – handling six different parameters at once. [Hunter] pokes at the server’s characteristics with a smartphone app – sending string data back and forth, switching an LED, and even changing parameters of audio or video color output by the Pico. Flash the server code into your Pico W, play with it, read through it, and follow the tutorial to learn what makes it tick.
Continue reading “This Bluetooth GATT Course Is A Must Watch”

A 1930s Ham Station

[Mikrowave1] wanted to build an authentic 1930s-style ham radio station that was portable. He’s already done a regenerative receiver, but now he’s starting on a tube transmitter that runs on batteries. He’s settled on a popular design for the time, a Jones push-pull transmitter. Despite the tubes, it will only put out a few watts, which is probably good for the batteries which, at the time, wouldn’t have been like modern batteries. You can see the kickoff video below.

According to the video, these kinds of radios were popular with expeditions to exotic parts of the world. He takes a nostalgic look back at some of the radios and antennas used in some of those expeditions.

Continue reading “A 1930s Ham Station”