Hackaday Prize Entry: Sonic Glasses

This year, the Hackaday Prize is going to find the most innovative and interesting assistive technologies. Whether that’s refreshable Braille displays or reliable utensils for the disabled, the finalists for the Assistive Technologies portion of the Prize will be creating some of the most interesting tech out there.

For his entry into the Assistive Technology part of the Prize, [Pawit] is building binaural glasses for the blind. It’s difficult to navigate unknown environments without a sense of sight, and these SonicScape glasses turn cheap distance sensors into head-mounted sonar.

The glasses are built around a pair of ultrasonic distance sensors (the HC-SR-04, if you’re curious), mounted in a convenient 3D-printed enclosure that looks sufficiently like a pair of glasses to not draw too many glares. (Although maybe we’d print them in black to lower the contrast.) Of note in this project is the Bluetooth connectivity to eliminate wires and independent left and right audio channels. That last bit — being able to hear in left and right — is something we haven’t seen before in devices like this and aims to greatly increase the usability of such a device.

Hackaday Prize Entry: The Weedinator Project, Now With Flame

We like that the Weedinator Project is thinking big for this year’s Hackaday Prize! This ambitious project by [TegwynTwmffat] is building on a previous effort, which was a tractor mounted weeding machine (shown above). It mercilessly shredded any weeds; the way it did this was by tilling everything that existed between orderly rows of growing leeks. The system worked, but it really wasn’t accurate enough. We suspect it had a nasty habit of mercilessly shredding the occasional leek. The new version takes a different approach.

The new Weedinator will be an autonomous robotic rover using a combination of GPS and colored markers for navigation. With an interesting looking adjustable suspension system to help with fine positioning, the Weedinator will use various attachments to help with plant care. Individual weeds will be identified optically and sent to the big greenhouse in the sky via precise flame from a small butane torch. It’s an ambitious project, but [TegwynTwmffat] is building off experience gained from the previous incarnation and we’re excited to see where it goes.

Hackaday Prize Entry: Fochica Alerts You

It seems like no one should need to be reminded about the importance of not leaving children in cars, but it still happens. The Fochica project is a Hackaday Prize entry that equips the family minivan with car seat monitors—the name comes from FOrgotten CHild in Car Alert.

It’s an Open Source project consisting of a Bluetooth LE-equipped Arduino that monitors whether the seat is empty or occupied. Paired with a phone app, Fochica monitors pressure sensors and the seat belt’s reed switch to determine whether there’s a kid there. The user’s app checks whether he or she is within Bluetooth range of the car, while also checking whether the kid’s seat is occupied. When the first comes up false and the second true, an alert is sounded.

We could see this technology also being useful for home automation tasks–for instance, reminding you to close the garage door before you go to bed. It’s a great project, and also one of the finalists in the Best Product challenge of the Hackaday Prize this year.

Continue reading “Hackaday Prize Entry: Fochica Alerts You”

Hackaday Prize Entry: CPAP Humidifier Monitor Alarm

CPAP (Continuous Positive Airway Pressure) machines can be life-changing for people with sleep apnea. [Scott Clandinin] benefits from his CPAP machine and devised a way to improve his quality of life even further with a non-destructive modification to monitor his machine’s humidifier.

With a CPAP machine, all air the wearer breathes is air that has gone through the machine. [Scott]’s CPAP machine has a small water reservoir which is heated to humidify the air before it goes to the wearer. However, depending on conditions the water reservoir may run dry during use, leading to the user waking up dried out and uncomfortable.

To solve this in a non-invasive way that required no modifications to the machine itself, [Scott] created a two-part device. The first part is a platform upon which the CPAP machine rests. A load cell interfaced to an HX711 Load Cell Amplifier allows an Arduino Nano to measure the mass of the CPAP machine plus the integrated water reservoir. By taking regular measurements, the Arduino can detect when the reservoir is about to run dry and sound an alarm. Getting one’s sleep interrupted by an alarm isn’t a pleasant way to wake up, but it’s much more pleasant than waking up dried out and uncomfortable from breathing hot, dry air for a while.

The second part of the device is a simple button interfaced to a hanger for the mask itself. While the mask is hung up, the system is idle. When the mask is removed from the hook, the system takes measurements and goes to work. This makes activation hassle-free, not to mention also avoids spurious alarms while the user removes and fills the water reservoir.

Non-invasive modifications to medical or other health-related devices is common, and a perfect example of nondestructive interfacing is the Eyedriveomatic which won the 2015 Hackaday Prize. Also, the HX711 Load Cell Amplifier has an Arduino library that was used in this bathroom scale refurb project.

Hackaday Prize Entry: Bloodhound Autonomous Radiolocation Drone

If you’re a first responder — say, searching for someone lost in the outback, or underneath an avalanche — and you’re looking for someone with a radio beacon, what’s the fastest way to find that beacon? Getting up high would be a good idea, and if you’re using radio direction finding, you’ll want to be able to cover a lot of ground quickly if only to make the triangulation a bit easier. High and fast — sounds like the perfect opportunity for a drone, right?

[Phil Handley]’s Bloodhound project is an autonomous drone that can scan a wide area, listening for emergency beacons while alerting the search and rescue personnel. His test bed tricopter uses DT750 brushless outrunners controlled by 18A Turnigy Plush ESCs and powered by a 2200mAh LiPo. A metal-gear servo works the yaw mechanism. He’s also got a Pixhawk Autopilot, a ArduPilot flight controller, a NavSpark GPS, a software defined radio dongle, and a Raspberry Pi. He made the air frame out of wooden dowels, following RCExplorer’s tricopter design.

The next challenge involves radio direction finding, essentially creating Bloodhound’s foxhunting skills. It needs to be able to autonomously track down a signal by taking readings from multiple angles. In addition to finding lost skiers, [Phil] also envisioned Bloodhound being used to track other beacons, of course—such as wildlife transponders or errant amateur rockets.

Hackaday Prize Entry: E.R.N.I.E. Teaches Robotics And Programming

[Sebastian Goscik]’s entry in the 2017 Hackaday Prize is a line following robot. Well, not really; the end result is a line following robot, but the actual project is about a simple, cheap robot chassis to be used in schools, clubs, and other educational, STEAM education events. Along with the chassis design comes a lesson plan allowing teachers to have a head start when presenting the kit to their students.

The lesson plan is for a line-following robot, but in design is a second lesson – traffic lights which connect to a main base through a bus and work in sync. The idea of these lessons is to be fairly simple and straightforward for both the teachers and the students in order to get them more interested in STEM subjects.

What [Sebastian] noticed about other robot kits was that they were expensive or complicated or lacked tutorials. Some either came pre-assembled or took a long time to assemble. [Sebastian] simplified things – The only things required after the initial assembly of the chassis are: Zip-ties, electrical tape and a few screws. The PCB can’t be disassembled, but the assembled PCB can be reused.

The hardware [Sebastian] came up with consists of some 3mm material that can be laser cut (acrylic or wood) and a sensor board that has 5 IR LEDs and corresponding IR sensors. The chassis can be put together using nothing more than a Phillips screwdriver, and the sensor PCBs are well documented so that soldering them is as easy as possible. An Arduino is used as the brains of the unit.

[Sebastian] has come up with a great project and the idea of a platform like this with a couple of lesson plans included is a great one. He’s released the hardware under an Open Hardware license as well so others can share and add-on. Of course, there are other line following robots, like this miniature one created with analog circuitry, and there are other open source robots for teaching, like this one. But [Sebastian]’s focus on the lesson plans is a really unique way of approaching the problem – one that will hopefully be very successful.

Continue reading “Hackaday Prize Entry: E.R.N.I.E. Teaches Robotics And Programming”

Hackaday Prize Entry: Staircane, A Walker That Takes The Stairs

[Jim]’s aunt has lived in the same house for the last 50 years. She loves it there, and she wants to stay as long as possible. There’s a big problem, though. The house has several staircases, and they are all beginning to disagree with her. Enter Staircane, [Jim]’s elegant solution that adds extendable legs to any standard walker.

Most of the time, walkers serve their purpose quite well. But once you encounter uneven ground or a staircase, they show their limitations. The idea behind Staircane is a simple one: quickly extend the back or front legs of a walker depending on the situation, and do so in unison. Staircane uses one button for each set of legs. Pushing the button engages a thin cable, much like the brake cable on a bicycle. The cable pulls a release trigger, unlocking the notched extensions. When the legs are sufficiently extended, the user simply releases the button to lock them in place. Once on flat ground, the user pushes the button again while pressing down on the walker to even out the leg lengths. Check out the video after the break to see the 3D-printed prototype.

Staircane is a semi-finalist in our Wheels, Wings, and Walkers challenge, which ended a few weeks ago. Did you know that you can enter your project into more than one challenge? Since this project falls squarely into assistive technologies territory, we hope that [Jim] and his team submit Staircane to our Assistive Technologies challenge before the deadline on September 4th. We don’t have many entries so far, so if  you’re thinking about entering, give in to temptation!

Continue reading “Hackaday Prize Entry: Staircane, A Walker That Takes The Stairs”