Wiggling Screen And DLP Power This Volumetric POV Display

It seems like the world is ready for a true 3D display. We’ve seen them in sci-fi for decades now, with the ability to view a scene from any angle and inspect it up close. They’ve remained elusive, but that might just be changing thanks to this open-source persistence-of-vision volumetric display.

If the VVD, as it has been named by its creator [Madaeon], looks somewhat familiar, perhaps it’s because editor-in-chief [Mike Szczys] ran into it back in 2019 at Maker Faire Rome. It looks like it has progressed quite a bit since then, but the basic idea is still the same. A thin, flexible membrane, which is stretched across a frame, is attached to articulated arms. The membrane can move up and down rapidly, fast enough that a 1,000-fps high-speed camera is needed to see it move. That allows you to see the magic in action; a digital light processor (DLP) module projects slices of a 3D image onto the sheet, sending the correct image out for each vertical position of the membrane. Carefully coordinating the images creates the POV illusion of a solid image floating in space, which can be observed from any angle, requires no special glasses, and can even be viewed by groups.

With displays like this, we’re used to issuing the caveat that “it no doubt looks better in person”, but we have to say in the GIFs and videos included the VVD looks pretty darn good. We think this is a natural for inclusion in the 2021 Hackaday Prize, and we’re pleased to see that it made it to the semi-finals of the “Rethink Displays” round.

PinThing Mechanizes Pin Art

Pin art is one of those things that simply cannot be left alone if it’s within arms reach, and inevitably end up with a hand or face imprint. [hugs] is also fascinated by them, so he designed the PinThing, a mechanized pin art display.

The PinThing pin diameters are much larger than standard pin art, but this is to fit small geared DC motors. Each pin is a short 3D-printed lead screw mechanism. The motors are driven with a stack of motor driver shields on top of an Arduino Uno, which uses Firmata to receive instructions over serial from a Node.js app using the Johnny-Five library. This may be a simple 3×5 proof of concept, but then it could be used for everything from displays to interactive table surfaces.

One of the challenges with pixelated mechanical displays like this, the inFORM from MIT, or even flip dot displays, are the costs in actuators and driver electronics. A small 10×10 array requires 100 motors and drivers, which quickly adds up as you expand, even if individual components are quite cheap.

If you are willing to sacrifice instantaneous response from each pixel, you can use a mechanical multiplexer. It consists of some sort of moving carriage behind the display with mounted actuators, so you’ll only need an actuator per row, not for every pin. This also means the pins can be closer together since the actuators can be staggered on the carriage.

PinThing project was an entry to the Rethink Displays Challenge of the 2021 Hackaday Prize, for which the finalists were just announced.

Continue reading “PinThing Mechanizes Pin Art”

Ten Projects Won The Rethink Displays Round Of The Hackaday Prize

We asked you to rethink what displays can look like and you didn’t disappoint. From almost 150 entries the judges have winnowed the list down to ten projects which are awarded a $500 prize and will go on to the final round of the 2021 Hackaday Prize in October.

In a world where there’s an HD (or better) display in every pocket, it is the oddball ideas that tend to turn heads. High on that list is a volumentric display that levitates a tiny foam ball on ultrasonic transducers to draw 3D color patterns before your eyes, or the volumetric display shown above that works with a sheet of film and motors. Or how about a take on a laser projected display that uses a phosphorescent screen so that the path of the laser persists, fading in time for the next infrequent update.

Mirrors are a part of everyday life but they’re all limited to the visable spectrum. One of today’s finalists flipped the script and turned the mirror into one the visualizes heat. And we’ll be watching with keen interest as this holographic display project seeks to turn a tube of perspex into a 3D display that can be viewed from any side!

This was the first of five challenges in the 2021 Hackaday Prize and the great news is that these finalists — all of which are listed below — will have until the end of October to refine their designs for the final judging round. Meanwhile the next round has already begun with the Refresh Work-From-Home Life challenge. Show off your solutions to being productive when working (or studying) from home while still preserving your personal life and your health.

Ten Finalists from the Rethink Displays challenge:

If you like these, you’ll love browsing through the entire field of entries in this challenge.

Silicon Jumpers Make This Wire-Free Breadboard Programmable

There’s no doubting the utility of the trusty solderless breadboard, but you have to admit they’re less than perfect. They’re not ideal for certain types of circuits, of course, but that’s less of a problem than those jumper wires. The careless will end up with their components hopeless tangled in a rat’s nest of jumpers, while the fastidious will spend far more time making the jumpers neat and tidy than actually prototyping the circuit itself. What to do?

One way to crack this nut is to make the solderless breadboard jumperless, too. That’s the idea behind “breadWare” a work-in-progress undertaken by [Kevin Santo Cappuccio]. The idea is to adapt a standard breadboard so that connections between arbitrary pairs of common contact strips — plus the power rails — can be made in software. The trick behind this is a matrix of analog CMOS switch chips, specifically the MT8816AP. Each chip’s 128 crosspoint switches can handle up ± 12 volts, so there are plenty of circuits that can use these programmable silicon jumpers.

[Kevin] is currently on version 0.2, which is sized to fit under a solderless breadboard and make a compact package. He shared details on how he’s connecting to the breadboard contacts, and it looks like a painful process: pull out the contact, cut a small tab at the gutter-end, and bend it down so it forms a lead for a through-hole in the PCB. It seems like a lot of work, and there must be a better way; [Kevin] is clearly open to suggestions.

While we’ve seen crosspoint switching used to augment solderless breadboarding before, we find this project pleasing in its simplicity. The thought of tossing out all those jumpers is certainly tempting.

Pi Pico-Powered ATX Motherboard

For a couple of years, embedded developer and Rust addict [Jonathan Pallant] aka [theJPster] has been working on a simple computer which he calls the Neotron. The idea is to make a computer that is not only easy to use but easy to understand as well. He describes it as a CP/M- or DOS-like operating system for small ARM microcontrollers. His most recent project is powered by a Raspberry Pi RP2040 Pico and built in the format of a microATX motherboard. This board packs a lot of features for a Pico-based design, including 12-bit color VGA and seven expansion slots. See his GitHub repository for a full list of specifications, and all the files needed to build your own — it is an Open Source project after all.

Besides the Neotron Pico itself, a couple of gems caught our eye in this well-documented project. [theJPster] was running out of I/O pins on the Pico, and didn’t have enough left over for all the peripherals’ chip selects. Check out how he uses an MCP23S17 SPI-bus I/O expander and a tri-state buffer to solve the problem.

On a more meta level, we are intrigued by his use of GitHub Actions. Per the standard concept of repositories, they shouldn’t contain the results of a build, be that an executable binary or Gerber files. Distribution of the build products is typically handled outside of GitHub, using something like GitHub’s Large File Storage service, or just ignoring convention altogether and putting them in the repo anyway. [theJPster] uses another method, employing GitHub Actions to generate the files needed for PCB fabrication, for example.

The Neotron Pico is the latest in a series of boards made to run Neotron OS. Previous boards include:

  • Neotron 9x — Microchip SAM9X
  • Neotron 1000 — STM32H7 + Lattice Semi iCE40 FPGA
  • Neotron 600 — Teensy 4.1
  • Neotron 340ST — ST 32F746G-DISCOVERY

Today’s Challenge Is All About Work-From-Home Life

You sure do learn a lot when life suddenly makes it impossible to go into the office and asks that you instead do the same work remotely. Sure, there are the obvious challenges like needing a device to do the work on and an internet connection that’s not going to melt down when family or roommates are trying to Zoom at the same time as you one-on-one with the boss. But there’s way more to it. The Refresh Work-From-Home Life challenge takes this on as the next phase of the Hackaday Prize gets under way this morning.

If the global pandemic caused you to find yourself working from home, I’m sure it’s been quite a ride. Maybe you learned what your spine feels like after hunching over a MacBook in bed for 40 hours. Others discovered that the commute had been silently serving as a power-down sequence for your “work brain” — without it you never stopped thinking about, or more likely worrying about, work. And without that change in venue, it’s far too easy to feel like you were now living at work. So let’s invent the things that can make us productive from home while maintaining physical health and preserving our sanity.

Ten entries in this challenge will be awarded with $500 and ushered into the final round where the grand prize of $25,000 and four other top prizes await. What kind of things are we looking for? The best ideas are the ones we haven’t had yet, but I can spitball a bit to get things rolling.

Mirror with a bracket turns a laptop webcam into an overhead project for Zoom classrooms

Furniture and other infrastructure can be a real sore-spot when not a good fit. We’d love to see your design that uses a single sheet of plywood (I know, those cost a bazillion dollars these days but just go with it) to build an adjustable workspace that fits your chair height and needs. Bonus points for one that folds away at quitting time to reassure you that work is done!

Office interruptions from co-works sometimes feel like a distraction. But without them you might not get your body moving for hours on end… not good for you! Design an assistant that watches for your poor sedentary habits and sasses you until you take some time to stretch your old bones. Or show off the gadgets that make living the digital nomad life easier like the awesome document camera hacks we saw from teachers when classrooms were closed last year.

Show off your proof of concept by starting a project page on Hackaday.io and using the dropdown in the left sidebar to enter it into the 2021 Hackaday Prize. You can continue to update it until judging begins at the end of July.

We’re already living in the future. Working or learning remotely is a big part of that. Let’s bend our homes and our habits to find a better way to do it!

Final Weekend For Display Challenge Of The Hackaday Prize

This is the final weekend to enter your display-related project in the 2021 Hackaday Prize. The good news is, pretty much anything that has a display on it fits the bill here.

The goal of the “Rethink Displays” challenge is to envision interesting ways to visualize data. How many times an hour do you reach for an unlock a smartphone just to get a small bit of data — current temperature, upcoming appointment, the next street to turn on, or how much time is left on your soufflé. There must be another way!

The newspaper is an eInk display that hides in plain sight among non-dynamic framed artwork.

That’s where you come in! Show off us a clever way to convey meaning by choosing a display that makes sense for the type of data and power budget available. Maybe it’s an ePaper display that camouflages itself as wall art, a set of analog meters for the current weather, or a way to upcycle old displays to live on after their portable lives have ended.

This doesn’t need to be a final product. Ten entries will be selected to receive a $500 prize and move on to the final round at the end of October. So if you spend this weekend pulling together a proof of concept, and do a superb job of telling the story of what you’re building, you’ll be firmly in the running! Finalists will have plenty of time to work on completing the designs.

Have a great idea but no time to work on it? Let people know it’s up for grabs by sharing the concept below.