Josef Prusa Warns Open Hardware 3D Printing Is Dead

It’s hard to overstate the impact desktop 3D printing has had on the making and hacking scene. It drastically lowered the barrier for many to create their own projects, and much of the prototyping and distribution of parts and tools that we see today simply wouldn’t be possible via traditional means.

What might not be obvious to those new to the game is that much of what we take for granted today in the 3D printing world has its origins in open source hardware (OSHW). Unfortunately, [Josef Prusa] has reason to believe that this aspect of desktop 3D printing is dead.

If you’ve been following 3D printing for awhile, you’ll know how quickly the industry and the hobby have evolved. Just a few years ago, the choice was between spending the better part of $1,000 USD on a printer with all the bells and whistles, or taking your chances with a stripped-down clone for half the price. But today, you can get a machine capable of self calibration and multi-color prints for what used to be entry-level prices. According to [Josef] however, there’s a hidden cost to consider.

Continue reading “Josef Prusa Warns Open Hardware 3D Printing Is Dead”

A Speed Loader For Your 3D Printer Filament

Reloading filament on a 3D printer is hardly anyone’s favorite task, but it’s even worse when you’re trying to shove stiff filament down a long and winding Bowden tube. Enter the speed loader from [Mr Flippant], which aims to take the pain out of this mechanically-frustrating chore.

The design is simple enough. It’s a small handheld tool that uses a 12 VDC gear motor to drive a set of Bondtech-style drive gears that you might find in an extruder. They’re assembled in a 3D printed housing with a microswitch to activate the motor, and a 9 volt battery to supply the juice.

To use the device, first thread the filament into the beginning of the Bowden tube. The idler gear is on a hinge, such that clamping it into position around the filament with the main gear activates the microswitch and turns the motor on, driving the filament all the way to the extruder. Job done! [Mr Flippant] notes that the filament should be as straight and unkinked as possible for best results, but that’s good advice when 3D printing in general.

Funnily enough, around these parts, when we talk about speed loaders, we’re usually discussing tapes.

Continue reading “A Speed Loader For Your 3D Printer Filament”

How To Design 3D-Printed Parts With Tolerance In Mind

One of the continuing struggles with FDM printing is making sure that parts that should fit together actually do. While adding significant tolerance between parts is an option, often you want to have a friction fit or at least a gap that you cannot drive a truck through. In a video by [Slant 3D] a number of tips and tricks to improve parts design with tolerance in mind are provided.

Starting with the fairly obvious, such as avoiding sharp corners, rounding off edges and using chamfered edges  and filets for e.g. lids to make getting started easy, the video then moves into more advanced topics. Material shrinkage is a concern, which is where using thin walls instead of solid blocks of material helps, as does using an appropriate infill type. Another interesting idea is to use a compliant mechanism in the lid to get a friction fit without getting all print parameters just right.

On the opposing side to the lid – or equivalent part – you’d follow many of the same tips, with the addition of e.g. slots that allow for the part to flex somewhat. All of this helps to deal with any variability between prints, with the suggested grip fins at the end of the video being probably the most extreme.

Continue reading “How To Design 3D-Printed Parts With Tolerance In Mind”

A variety of red and black glass objects are shown on a white background. In the foreground, there are two black spiral-patterned earrings. To the left is a red and black shape with three points on the top. On the right, a deformed glass sheet is shown bent over concentric red and black glass rings. In the center top is a red glass vase with a roughly-textured exterior.

Paste Extrusion For 3D Printing Glass And Eggshells

In contrast to the success of their molten-plastic cousins, paste extrusion 3D printers have never really attained much popularity. This is shame because, as the [Hand and Machine] research group at the University of New Mexico demonstrate, you can use them to print with some really interesting materials, including glass and eggshell. Links to the respective research papers are here: glass and eggshells, with presentations in the supplemental materials.

To print with glass, the researchers created a clay-like paste out of glass frit, methyl cellulose and xanthan gum as shear-thinning binders, and water. They used a vacuum chamber to remove bubbles, then extruded the paste from a clay 3D printer. After letting the resulting parts dry, they fired them in a kiln at approximately 750 ℃ to burn away the binder and sinter the frit. This introduced some shrinkage, but it was controllable enough to at least make decorative parts, and it might be predictable enough to make functional parts after some post-processing.

Path generation for the printer was an interesting problem; the printer couldn’t start and stop extrusion quickly, so [Hand and Machine] developed a custom slicer to generate tool paths that minimize material leakage. To avoid glass walls collapsing during firing, they also wrote another slicer to maintain constant wall thicknesses.

The process for printing with eggshell was similar: the researchers ground eggshells into a powder, mixed this with water, methyl cellulose and xanthan gum, and printed with the resulting paste. After drying, the parts didn’t need any additional processing. The major advantage of these parts is their biodegradability, as the researchers demonstrated by printing a biodegradable pot for plants. To be honest, we don’t think that this will be as useful an innovation for hackers as the glass could be, but it does demonstrate the abilities of paste extrusion.

The same team has previously used a paste printer to 3D print in metal. If you don’t have a paste printer, it’s also possible to print glass using a laser cutter, or you could always make your own paste extruder.

Double Your Printing Fun With Dual-Light 3D Printing

Using light to 3D print liquid resins is hardly a new idea. But researchers at the University of Texas at Austin want to double down on the idea. Specifically, they use a resin with different physical properties when cured using different wavelengths of light.

Natural constructions like bone and cartilage inspired the researchers. With violet light, the resin cures into a rubbery material. However, ultraviolet light produces a rigid cured material. Many of their test prints are bio-analogs, unsurprisingly.

Continue reading “Double Your Printing Fun With Dual-Light 3D Printing”

Ask Hackaday: Are You Wearing 3D Printed Shoes?

We love 3D printing. We’ll print brackets, brackets for brackets, and brackets to hold other brackets in place. Perhaps even a guilty-pleasure Benchy. But 3D printed shoes? That’s where we start to have questions.

Every few months, someone announces a new line of 3D-printed footwear. Do you really want your next pair of sneakers to come out of a nozzle? Most of the shoes are either limited editions or fail to become very popular.

First World Problem

You might be thinking, “Really? Is this a problem that 3D printing is uniquely situated to solve?” You might assume that this is just some funny designs on some of the 3D model download sites. But no. Adidas, Nike, and Puma have shoes that are at least partially 3D printed. We have to ask why.

We are pretty happy with our shoes just the way that they are. But we will admit, if you insist on getting a perfect fitting shoe, maybe having a scan of your foot and a custom or semi-custom shoe printed is a good idea. Zellerfield lets you scan your feet with your phone, for example. [Stefan] at CNC Kitchen had a look at those in a recent video. The company is also in many partnerships, so when you hear that Hugo Boss, Mallet London, and Sean Watherspoon have a 3D-printed shoe, it might actually be their design from Zellerfield.

Continue reading “Ask Hackaday: Are You Wearing 3D Printed Shoes?”

Mark Setrakian and Adam Savage investigate a massive prop hand

17 Year Old Hellboy II Prop Still Amazes

The AI effects we know these days were once preceded by CGI, and those were once preceded by true hand-built physical props. If that makes you think of Muppets, this video will change your mind. In a behind-the-scenes look with [Adam Savage], effects designer [Mark Setrakian] reveals the full animatronic glory of Mr. Wink’s mechanical fist from Hellboy II: The Golden Army (2008) – and this beast still flexes.

Most of this arm was actually made in 2003, when 3D printing was very different than what we think of today. Printed on a Stratasys Titan – think: large refrigerator-sized machine, expensive as sin – the parts were then hand-textured with a Dremel for that war-scarred, brutalist feel. This wasn’t just basic animatronics for set dressing. This was a fully actuated prop with servo-driven finger joints, a retractable chain weapon, and bevel-geared mechanisms that scream mechanical craftsmanship.

Each finger is individually designed. The chain reel: powered by a DeWalt drill motor and custom bevel gear assembly. Every department: sculptors, CAD modelers, machinists, contributed to this hybrid of analog and digital magic. Props like this are becoming unicorns.

Continue reading “17 Year Old Hellboy II Prop Still Amazes”