A couple of weeks back, we covered an interesting method for prototyping PCBs using a modified CNC mill to 3D print solder onto a blank FR4 substrate. The video showing this process generated a lot of interest and no fewer than 20 tips to the Hackaday tips line, which continued to come in dribs and drabs this week. In a world where low-cost, fast-turn PCB fabs exist, the amount of effort that went into this method makes little sense, and readers certainly made that known in the comments section. Given that the blokes who pulled this off are gearheads with no hobby electronics background, it kind of made their approach a little more understandable, but it still left a ton of practical questions about how they pulled it off. And now a new video from the aptly named Bad Obsession Motorsports attempts to explain what went on behind the scenes.
3d printing807 Articles
Hackers, Patents, And 3D Printing
Last week, we ran a post about a slightly controversial video that claimed that a particular 3D-printing slicing strategy was tied up by a patent troll. We’re absolutely not lawyers here at Hackaday, but we’ve been in the amateur 3D printing revolution since the very beginning, and surprisingly patents have played a role all along.
Modern fused-deposition modelling (FDM) 3D printing began with Stratasys’ patent US5121329A, “Apparatus and method for creating three-dimensional objects”, and the machines they manufactured and sold based on the technology. Go read the patent, it’s an absolute beauty and has 44 different claims that cover just about everything in FDM printing. This was the watershed invention, and today, everything claimed in the patent is free.
Stratasys’ patent on the fundamental FDM method kept anyone else from commercializing it until the patent expired in 2009. Not coincidentally, the first available home-gamer 3D printer, the Makerbot Cupcake, also went on sale in 2009.
The Stratasys machines were also one of the big inspirations for Adrian Bowyer to start the RepRap project, the open-source movement that basically lead to us all having cheap and cheerful 3D printers today, and he didn’t let the patent stop him from innovating before it lapsed. Indeed, the documentation for the RepRap Darwin dates back to 2007. Zach [Hoeken] Smith delivered our hackerspace the acrylic parts to make one just around that time, and we had it running a year or two before the Cupcake came out of the company that he, Bre, and Adam shortly thereafter founded.
The story of hackers and 3D printers is longer than the commercial version of the same story would imply, and a lot of important innovations have come out of our community since then too. For instance, have a look at Stratasys’ patent on heated bed technology. At first read, it seems to cover removable heated beds, but have a look at the cutout at the end of claim 1: “wherein the polymer coating is not a polymer tape”. This cutout is presumably in response to the at-the-time common practice of buying Kapton, PEI, or PET tape and applying that to removable heated bed surfaces. I know I was doing that in 2012, because I read about it on IRC or something, long before the Stratasys patent was filed in 2014. They could only get a patent for sprayed-on coatings.
As [Helge] points out, it’s also easily verifiable that the current patent on “brick layers” that we’re worrying about, filed in 2020, comes later than this feature request to Prusa Slicer that covers essentially the same thing in 2019. We assume that the patent examiner simply missed that obvious prior art – they are human after all. But I certainly wouldn’t hesitate to implement this feature given the documented timing.
I would even be so bold as to say that most of the post-2010 innovation in 3D printing has been made by hobbyists. While the RepRap movement was certainly inspired by Stratasys’ invention in the beginning, our community is where the innovation is happening now, and maybe even more starkly on the software side of things than the hardware. Either way, as long as you’re just doing it for fun, let the suits worry about the patents. Hackers gotta hack.
Fuzzy Skin Finish For 3D Prints, Now On Top Layers
[TenTech]’s Fuzzyficator brings fuzzy skin — a textured finish normally limited to sides of 3D prints — to the top layer with the help of some non-planar printing, no hardware modifications required. You can watch it in action in the video below, which also includes details on how to integrate this functionality into your favorite slicer software.
Fuzzyficator essentially works by moving the print nozzle up and down while laying down a top layer, resulting in a textured finish that does a decent job of matching the fuzzy skin texture one can put on sides of a print. Instead of making small lateral movements while printing outside perimeters, the nozzle does little z-axis hops while printing the top.
Handily, Fuzzyficator works by being called as a post-processing script by the slicer (at this writing, PrusaSlicer, Orca Slicer, and Bambu Studio are tested) which also very conveniently reads the current slicer settings for fuzzy skin, in order to match them.
Non-planar 3D printing opens new doors but we haven’t seen it work like this before. There are a variety of ways to experiment with non-planar printing for those who like to tinker with their printers. But there’s work to be done that doesn’t involve hardware, too. Non-planar printing also requires new ways of thinking about slicing.
Continue reading “Fuzzy Skin Finish For 3D Prints, Now On Top Layers”
Transforming Pawn Changes The Game
3D printing has allowed the hobbyist to turn out all sorts of interesting chess sets with either intricate details or things that are too specialized to warrant a full scale injection molded production run. Now, the magic of 3D printing has allowed [Works By Design] to change the game by making pawns that can automatically transform themselves into queens.
Inspired by a CGI transforming chess piece designed by [Polyfjord], [Works By Design] wanted to make a pawn that could transform itself exist in the real world. What started as a chonky setup with multiple springs and a manually-actuated mechanism eventually was whittled down to a single spring, some pins, and four magnets as vitamins for the 3D printed piece.
We always love getting a peek into the trial-and-error process of a project, especially for something with such a slick-looking final product. Paired with a special chess board with steel in the ends, the magnets in the base activate the transformation sequence when they reach the opposite end.
After you print your own, how about playing chess against the printer? We’d love to see a version machined from metal too.
Thanks to [DjBiohazard] on Discord for the tip!
FLOSS Weekly Episode 807: Bitten By The Penguin
This week, Jonathan Bennett and Dan Lynch chat with Josh Bressers, VP of Security at Anchore, and host of the Open Source Security and Hacker History podcasts. We talk security, SBOMs, and how Josh almost became a Sun fan instead of a Linux geek.
– https://opensourcesecurity.io
– https://hackerhistory.com
– https://infosec.exchange/@joshbressers
– https://anchore.com
Continue reading “FLOSS Weekly Episode 807: Bitten By The Penguin”
Putting The New CryoGrip Build Plate To The Test
BIQU has released a new line of low-temperature build plates that look to be the next step in 3D printing’s iteration—or so YouTuber Printing Perspective thinks after reviewing one. The Cryogrip Pro is designed for the Bambu X1, P1, and A1 series of printers but could easily be adapted for other magnetic-bed machines.
The idea of the new material is to reduce the need for high bed temperatures, keeping enclosure temperatures low. As some enclosed printer owners may know, trying to print PLA and even PETG with the door closed can be troublesome due to how slowly these materials cool. Too high an ambient temperature can wreak havoc with this cooling process, even leading to nozzle-clogging.
The new build plate purports to enable low, even ambient bed temperatures, still with maximum adhesion. Two versions are available, with the ‘frostbite’ version intended for only PLA and PETG but having the best adhesion properties. A more general-purpose version, the ‘glacier’ sacrifices a little bed adhesion but gains the ability to handle a much wider range of materials.
An initial test with a decent-sized print showed that the bed adhesion was excellent, but after removing the print, it still looked warped. The theory was that it was due to how consistently the magnetic build plate was attached to the printer bed plate, which was now the limiting factor. Switching to a different printer seemed to ‘fix’ that issue, but that was really only needed to continue the build plate review.
They demonstrated a common issue with high-grip build plates: what happens when you try to remove the print. Obviously, magnetic build plates are designed to be removed and flexed to pop off the print, and this one is no different. The extreme adhesion, even at ambient temperature, does mean it’s even more essential to flex that plate, and thin prints will be troublesome. We guess that if these plates allow the door to be kept closed, then there are quite a few advantages, namely lower operating noise and improved filtration to keep those nasty nanoparticles in check. And low bed temperatures mean lower energy consumption, which is got to be a good thing. Don’t underestimate how much power that beefy bed heater needs!
Ever wondered what mini QR-code-like tags are on the high-end build plates? We’ve got the answer. And now that you’ve got a pile of different build plates, how do you store them and keep them clean? With this neat gadget!
Continue reading “Putting The New CryoGrip Build Plate To The Test”
FLOSS Weekly Episode 806: Manyfold — The Dopamine Of Open Source
This week Jonathan Bennett and David Ruggles chat with James Smith about Manyfold, the self-hosted 3D print digital asset manager that’s on the Fediverse! Does it do live renders? Does it slice? Listen to find out!
Continue reading “FLOSS Weekly Episode 806: Manyfold — The Dopamine Of Open Source”