It’s A Clock! It’s A Puzzle! It’s The GoonieBox!

[Dr.Duino] recently completed the latest piece of what he calls “Interactive Furniture” – the GoonieBox. It took over 800 hours of design and assembly work and the result is fascinating. Part clock and part puzzle box, it’s loaded with symbols, moving parts, lights, riddles, sounds, switches, and locked compartments. It practically begs visitors to take a closer look.

The concept of Interactive Furniture led [Dr.Duino] to want to create a unique piece of decor that visitors could interact with. That alone wasn’t enough — he wanted something that wouldn’t require any explanation of how it worked; something that intrinsically invited attention, inspection, and exploration. This quest led to creating The GoonieBox, named for its twin inspirations of the 1985 film The Goonies as well as puzzles from the game “The Room“.

Embedded below are two short videos: the first demonstrates the functions of the box, and the second covers the build process. There’s laser-cut wood, plenty of 3D printed parts, and a whole lot of careful planning and testing.

Continue reading “It’s A Clock! It’s A Puzzle! It’s The GoonieBox!”

3D Printed Nozzles Turbocharge Microsphere Production

Researchers at MIT have used 3D printing to open the door to low-cost, scalable, and consistent generation of microencapsulated particles, at a fraction of the time and cost usually required. Microencapsulation is the process of encasing particles of one material (a core) within another material (a shell) and has applications in pharmaceuticals, self-healing materials, and dye-based solar cells, among others. But the main problem with the process was that it was that it was slow and didn’t scale, and it was therefore expensive and limited to high-value applications only. With some smart design and stereolithography (SLA) 3D printing, that changed. The researchers are not 3D printing these just because they can; they are printing the arrays because it’s the only way they can be made.

Continue reading “3D Printed Nozzles Turbocharge Microsphere Production”

Blooming Flower Lamp Will Test Your 3D Printer

[ossum] has a baby on the way. He admits that he got a bit carried away, brimming with parental excitement. What resulted is a fully articulated LED WiFi lamp that blooms and glows dramatically in the friendly confines of the oncoming baby’s room.

We’ve covered [ossum]’s work before. As usual, he started off by showing his complete mastery of Fusion360 and making the rest of us look bad. If you want to learn 360, we recommend scrobbing through his models to see how it’s done.  The base encloses an ESP8266 and a hobby servo. A clever mechanism pulls down on a stranded steel cable that runs through the stem along with some control lines for the LEDS. This opens and closes the petals. The LEDs are all held in a 3D printed frame which produces a nice even glow.

If you’d like to build one yourself, there’s a full video viewable after the break. Files are available on Thingiverse. Just make sure you tune up your printer first, this is a tough one.

Continue reading “Blooming Flower Lamp Will Test Your 3D Printer”

Design And Testing Of The Form 2

Formlabs makes a pretty dang good SLA printer by all accounts. Though a bit premium in the pricing when compared to the more humble impact of FDM printers on the wallet, there’s a bit more to an SLA printer. The reasoning becomes a bit more obvious when reading through this two part series on the design and testing of the Form 2.

It was interesting to see what tests they thought were necessary to ensure the reliable operation of the machine. For example the beam profile of every single laser that goes into a printer is tested to have the correctly shaped spot. We also thought the Talcum powder test was pretty crazy. They left a printer inside a sandblast cabinet and blasted it with Talcum powder to see if dust ingress could cause the printer to fail; it didn’t.

The prototyping section was a good read. Formlabs was praised early on for the professional appearance of their printers. It was interesting to see how they went from a sort of hacky looking monstrosity to the final look. They started by giving each engineer a Form 1 and telling them to modify it in whatever way they thought would produce a better layer separation mechanism. Once they settled on one they liked they figured out how much space they’d need to hold all the new mechanics and electronics. After that it was up to the industrial designer to come up with a look that worked.

They’re promising a third part of the series covering how the feedback from beta testing was directed back into the engineering process. All in all the Form 2 ended up being quite a good printer and the reviews have been positive. The resin from Formlab is a little expensive, but unlike others they still allow users to put the printer in open mode and use other resin if they’d like. It was cool to see their engineering process.

BuildTak, PEI, And Early Adopter Syndrome

I’m guessing most of the members of the Hackaday community are what most people would consider early adopters. Sure, there’s variation among us, but compared to the general population we probably all qualify. I’ve spent many years being an early adopter. I owned a computer, a TiVO, a digital camera, a 3D printer, a drone, and many other gadgets before they became well known. I’ve avoided the self-balancing conveyance craze (I’ll stick with my motorcycle).

Of course, you know if you are an early adopter, you will overpay. New has a premium, after all. But there is another price: you often have the first, but not the optimum. My first digital camera took 3.5 inch floppies. My TiVO has an analog tuner.

I was reminded of this last week. A number of years ago, I built a 3D printer. A lot of printers back then didn’t have heated build plates, so printing ABS required rafts and ABS juice and frustration. I made sure to get a heated bed and, like most people in those days, I had a glass print surface covered in Kapton.

That works pretty well with ABS, but it isn’t perfect. Aqua Net hair spray makes it stick better, but large flat prints still take a little work. With a little practice, it isn’t bad. I eventually switched to an aluminum bed and didn’t have to level the head quite as often, but it didn’t really make things any better, just more repeatable.

The years pass and other gadgets beckon. I use the printer about like I use a drill press. I don’t use it every day, but when you need it it is handy. I have to admit, I’ve been getting partial to PLA since it doesn’t warp. But PLA in the hot Houston sun isn’t always a good mix, so I still print a fair amount of ABS.

The other day I noticed a product called BuildTak. I also heard some people are printing on PEI sheets. I decided to try the BuildTak. Wow! What a difference.

Continue reading “BuildTak, PEI, And Early Adopter Syndrome”

Robots With 3D Printed Shock Absorbing Skin

MIT’s Computer Science and Artificial Intelligence Laboratory, CSAIL, put out a paper recently about an interesting advance in 3D printing. Naturally, being the computer science and AI lab the paper had a robotic bend to it. In summary, they can 3D print a robot with a rubber skin of arbitrarily varying stiffness. The end goal? Shock absorbing skin!

They modified an Objet printer to print simultaneously using three materials. One is a UV curing solid. One is a UV curing rubber, and the other is an unreactive liquid. By carefully depositing these in a pattern they can print a material with any property they like. In doing so they have been able to print mono body robots that, simply put, crash into the ground better.  There are other uses of course, from joints to sensor housings. There’s more in the paper.

We’re not sure how this compares to the Objet’s existing ability to mix flexible resins together to produce different Shore ratings. Likely this offers more seamless transitions and a wider range of material properties. From the paper it also appears to dampen better than the alternatives. Either way, it’s an interesting advance and approach. We wonder if it’s possible to reproduce on a larger scale with FDM.