Multi-View Wire Art Meets Generative AI

DreamWire is a system for generating multi-view wire art using machine learning techniques to help generate the patterns required.

The 3-dimensional wire pattern in the center creates images of Einstein, Turing, and Newton depending on viewing angle.

What’s wire art? It’s a three-dimensional twisted mass of lines which, when viewed from a certain perspective, yields an image. Multi-view wire art produces different images from the same mass depending on the viewing angle, and as one can imagine, such things get very complex, very quickly.

A recently-released paper explains how the system works, explaining the role generative AI plays in being uniquely suited to create meaningful intersections between multiple inputs. There’s also a video (embedded just under the page break) that showcases many of the results researchers obtained.

The GitHub repository for the project doesn’t have much in it yet, but it’s a good place to keep an eye on if you’re interested in what comes next.

We’ve seen generative AI applied in a similarly novel way to help create visual anagrams, or 2D patterns that can be interpreted differently based on a variety of orientations and permutations. These sorts of systems still need to be guided by a human, but having machine learning do the heavy lifting allows just about anybody to explore their creativity.

Continue reading “Multi-View Wire Art Meets Generative AI”

The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument

Pianos use little hammers striking taut strings to make tones. The Mellotron used lots of individual tape mechanisms. Meanwhile, the Trans-Harmonium from [Emily Francisco] uses an altogether more curious method of generating sound — each key on this keyboard instrument turns on a functional clock radio.

Electrically, there’s not a whole lot going on. The clock radios have their speaker lines cut, which are then rejoined by pressing their relevant key on the keyboard. As per [Emily]’s instructions for displaying the piece, it’s intended that the radio corresponding to C be tuned in to a local classical station. Keys A, B, D, E, F, and G are then to be tuned to other local stations, while the sharps and flats are to be tuned to the spaces in between, providing a dodgy mix of static and almost-there music and conversation.

It’s an interesting art piece that, no matter how well you play it, will probably not net you a Grammy Award. That would be missing the point, though, as it’s more a piece about “Collecting Fragments of Time,” a broader art project of which this piece is a part.

We do love a good art piece, especially those that repurpose old hardware to great aesthetic achievement.

Continue reading “The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument”

LED Art Project Is Geometrically Beautiful

There is no shortage of companies on the Internet willing to sell you expensive glowing things to stick on your walls. Many hackers prefer to make their own however, and [Chris] is no exception. His LED wall art is neat, tidy, and stylish, all at once.

Wanting a geometric design, [Chris] decided to have his layout designed by a random number generator. He created his own tool that would generate a design using preset segment lengths arranged in a random fashion. Once he found a layout that worked for him, he designed a set of plastic adapters that would let him connect pre-cut lengths of aluminium channel together so he could assemble his design.

With the frame complete, he then laid the LED strips into the channels, after mapping out how he would connect the full circuit of addressable LED strips. He enlisted a Raspberry Pi Zero W as the brains of the operation, responsible for commanding the strips to light in the colors of his desire.

In a nice aesthetic touch, he sanded the whole frame and painted it a uniform grey color. This hid the joins between the 3D-printed parts and the aluminium channels, and gave it a more finished look. He also went to the trouble of graphing out the locations of the various LEDs in the frame, and used this data as the basis for animations that race between points on the frame. It’s somehow more compelling than the usual simple color fades and flashes of typical commercial products.

It’s a tidy build, and a level more artful than some of the off-the-shelf products out there. For his investment of time and money, [Chris] has netted an excellent piece of wall art in the process.

How Do You Prove An AI Didn’t Make Your Art?

In the world of digital art, distinguishing between AI-generated and human-made creations has become a significant challenge. Almost overnight, tool sets for generating AI artworks became commonly available to the public, and suddenly, every digital art competition had to contend with potential submissions. Some have welcomed AI, while others demand competitors create artworks by their own hand and no other.

The problem facing artists and judges alike is just how to determine whether an artwork was created by a human or an AI. So what can be done?

Continue reading “How Do You Prove An AI Didn’t Make Your Art?”

Blatano Art Project Tracks Devices In Its Vicinity

Computers, surveillance systems, and online agents are perceiving us all the time these days. Most of the time, it takes place in the shadows, and we’re supposed to be unaware of this activity going on in the background. The Blatano art piece from [Leigh] instead shows a digital being that actively displays its perception of other digital beings in the world around it.

The project is based on an ESP32, using the BLE Scanner library to scan for Bluetooth devices in the immediate vicinity. Pwnagochi and Hash Monster tools are also used to inspect WiFi traffic, while the CovidSniffer library picks up packets from contact-tracking apps that may be operating in the area.

This data is used to create profiles of various devices that the Blatano can pick up. It then assigns names and little robotic images to each “identity,” and keeps tabs on them over time. It’s an imperfect science, given that some devices regularly change their Bluetooth identifiers and the like. Regardless, it’s interesting to watch a digital device monitor the scene like a wallflower watching punters at a house party.

If you’ve built your own art-surveillance devices to comment on the state of modernity, don’t hesitate to drop us a line!

The Insatiable Hunger Of Paper Shredder-Based Locomotion

We enjoy hacks that combine or alter devices, enhancing (or subverting) their purpose in the process, but [Japhy Riddle] reminds us all that sometimes it’s fun just to enjoy a spectacle. In this case, it’s an old paper shredder given wheels and a continuous line of paper to rip into.

The result is a device demonstrating a shredder-based form of locomotion, noisily pulling itself along by its own insatiable appetite.

It even looks like a robot, even though there’s nothing really going on inside. It just mindlessly and noisily consumes, converting paper into shreds, moving inexorably forward and limited only by the supply of paper or the length of its power cable, whichever is shorter. Powerful artistic statement, or simple spectacle? You be the judge.

Want to try your hand at a paper shredder-inspired piece? You can take artistic inspiration from the stock tracker that literally shreds your money when the market is down, or if you’re more interested in the worky bits, make your own shredder from LEGO.

Continue reading “The Insatiable Hunger Of Paper Shredder-Based Locomotion”

WhisperFrame Depicts The Art Of Conversation

At this point, you gotta figure that you’re at least being listened to almost everywhere you go, whether it be a home assistant or your very own phone. So why not roll with the punches and turn lemons into something like a still life of lemons that’s a bit wonky? What we mean is, why not take our conversations and use AI to turn them into art? That’s the idea behind this next-generation digital photo frame created by [TheMorehavoc].
Essentially, it uses a Raspberry Pi and a Respeaker four-mic array to listen to conversations in the room. It listens and records 15-20 seconds of audio, and sends that to the OpenWhisper API to generate a transcript.
This repeats until five minutes of audio is collected, then the entire transcript is sent through GPT-4 to extract an image prompt from a single topic in the conversation. Then, that prompt is shipped off to Stable Diffusion to get an image to be displayed on the screen. As you can imagine, the images generated run the gamut from really weird to really awesome.

The natural lulls in conversation presented a bit of a problem in that the transcription was still generating during silences, presumably because of ambient noise. The answer was in voice activity detection software that gives a probability that a voice is present.

Naturally, people were curious about the prompts for the images, so [TheMorehavoc] made a little gallery sign with a MagTag that uses Adafruit.io as the MQTT broker. Build video is up after the break, and you can check out the images here (warning, some are NSFW).

Continue reading “WhisperFrame Depicts The Art Of Conversation”