Robots Chase Down Balls In Fun Outdoor Game

Art installations aren’t always about static sculpture or pure aesthetics. In the case of Operation Kiba, they can be fun games for everyone to enjoy.

The aim of Operation Kiba is for the players to collect all the “balls” on the playing field, which are intended to represent scoops of ice cream. Collecting the balls is done via robot. Each player is ostensibly tasked with collecting one color of ball or the other, but players often decide to work together in harmony instead. The balls are released at the start of the game by tipping over a big bowl. This is half the fun, and is achieved by tugging a string which upends the vessel and scatters the balls.

The remote-control robots themselves come from an earlier art installation the group built called Bubble Blast. They’re built using a 3D printed chassis, with wheels on each side driven by DC gear motors. With tank-style steering, they can rotate on the spot, providing good maneuverability. An Arduino Nano runs the show, receiving commands over a 433 MHz radio link. Power is via DeWalt cordless drill batteries, and the robots are controlled via arcade sticks. They’re color-coded to match the balls in the game.

As far as art installations go, it may not be fancy or pretentious, but it certainly looks like a lot of fun. We’re sure it could eventually guide many players towards the exciting world of antweight combat robotics. Video after the break.

Continue reading “Robots Chase Down Balls In Fun Outdoor Game”

AI Midjourney Imagines “Stairway To Heaven”

This modern era of GPU-accelerated AI applications have their benefits. Pulling useful information out of mountains of raw data, alerting users to driving hazards, or just keeping an eye on bee populations are all helpful. Lately there has been a rise in attempts at producing (or should that be curating?) works of art out of carefully sculpted inputs.

One such AI art project is midjourney, which can be played with via a Discord integration bot. That bot takes some textual input, then “dreams” with it, producing sometime uncanny, often downright disturbing images.

You can have a tinker with it for free, for a short while, but there is monthly cost if you want to use it ‘for real’ whatever that means. YouTuber [Daara] has been feeding the lyrics from Led Zeppelin’s “Stairway to Heaven” into it, producing a video tour of the resulting outputs for your perusal. Continue reading “AI Midjourney Imagines “Stairway To Heaven””

Stable Diffusion And Why It Matters

You might not have heard about Stable Diffusion. As of writing this article, it’s less than a few weeks old. Perhaps you’ve heard about it and some of the hubbub around it. It is an AI model that can generate images based on a text prompt or an input image. Why is it important, how do you use it, and why should you care?

This year we have seen several image generation AIs such as Dall-e 2, Imagen, and even Craiyon. Nvidia’s Canvas AI allows someone to create a crude image with various colors representing different elements, such as mountains or water. Canvas can transform it into a beautiful landscape. What makes Stable Diffusion special? For starters, it is open source under the Creative ML OpenRAIL-M license, which is relatively permissive. Additionally, you can run Stable Diffusion (SD) on your computer rather than via the cloud, accessed by a website or API. They recommend a 3xxx series NVIDIA GPU with at least 6GB of RAM to get decent results. But due to its open-source nature, patches and tweaks enable it to be CPU only, AMD powered, or even Mac friendly.

This touches on the more important thing about SD. The community and energy around it. There are dozens of repos with different features, web UIs, and optimizations. People are training new models or fine-tuning models to generate different styles of content better. There are plugins to Photoshop and Krita. Other models are incorporated into the flow, such as image upscaling or face correction. The speed at which this has come into existence is dizzying. Right now, it’s a bit of the wild west. Continue reading “Stable Diffusion And Why It Matters”

Solar Cells As Art Form

When most of us approach a project, we have a certain problem to solve. 3D printing, microcontrollers, batteries, and all kinds of technologies are usually tools to accomplish some task. This is not necessarily true in the art world, though, where the intrinsic nature of these tools can be explored for their own sake rather than as a means to an end. The latest one that came across our desk is this light-powered sound generator.

The art piece looks a bit like a mobile with rotating arms, holding various small solar cells each connected to a speaker. As the arms pivot, the light falling on the cells changes which drives a specially-designed circuit connected to a speaker. The circuit acts as an oscillator, passing the changing voltage from the cell through various capacitors and transistors to produce changing tones in the speaker.

The effect of the rotating solar panels is not only oscillations from the speakers as the light changes, but oscillations in the sound of the speakers as they rotate towards and away from the observer. It’s a unique project and perfect for the art show it was in. It’s also not the only sound-focused art installation we’ve ever seen before, be sure to check out this one based on an ESP32.

Every Frame A Work Of Art With This Color Ultra-Slow Movie Player

One of the more recent trendy builds we’ve seen is the slow-motion movie player. We love them — displaying one frame for a couple of hours to perhaps a full day is like an ever-changing, slowly morphing work of art. Given that most of them use monochrome e-paper displays, they’re especially suited for old black-and-white films, which somehow makes them even more classy and artsy.

But not every film works on a monochrome display. That’s where this full-color ultra-slow motion movie player by [likeablob] shines. OK, full color might be pushing it a bit; the build centers around a 5.65″ seven-color EPD module. But from what we can see, the display does a pretty good job at rendering frames from films like Spirited Away and The Matrix. Of course there is the problem of the long refresh time of the display, which can be more than 30 seconds, but with a frame rate of one every two hours, that’s not a huge problem. Power management, however, can be an issue, but [likeablob] leveraged the low-power co-processor on an ESP32 to handle the refresh tasks. The result is an estimated full year of battery life for the display.

We’ve seen that same Waveshare display used in a similar player before, and while some will no doubt object to the muted color rendering, we think it could work well with a lot of movies. And we still love the monochrome players we’ve seen, too.

KachiChan_Sisyphus_RobotArms-On-A-Platform

Robot Repeatedly Rearranges Remnants In The Round

Sisyphus is an art installation by [Kachi Chan] featuring two scales of robots engaged in endless cyclic interaction. Smaller robots build brick arches while a giant robot pushes them down. As [Kachi Chan] says “this robotic system propels a narrative of construction and deconstruction.” The project was awarded honorary mention at the Ars Electronica’s Prix Ars 2022 in the Digital Communities category. Watch the video after the break to see the final concept.

KachiChan_Sisyphus_RobotArms-On-A-Platform_detail-view

[Kachi Chan] developed the installation in pre-visualizations and through a series of prototypes shown in a moody process film, the second video after the break. While the film is quite short on details, you’ll see iterations of the robot arm and computer vision system. According to this article on the project [Kachi Chan] used Cinema 4D to simulate the motion, ROS for control, PincherX150 robotic arms modified with Dynamixel XM 430 & XL430 servo motors, and custom 3D prints.

We’ve covered another type of Sisyphus project, sand tables like this and the Sisyphish. Continue reading “Robot Repeatedly Rearranges Remnants In The Round”

Screenshot of the website, showing the sidebar with technology types on the left, and an entry about modifying LCD polarizers on the right, with a video showing an art piece using LCD polarizers

Alternative Display Technologies And Where To Find Them

[Blair Neal] has been working on an information database for artists and hackers – a collection of non-conventional display technologies available to us. We’ve covered this repository before, six years ago – since then, it’s moved to a more suitable platform, almost doubled in size, and currently covers over 40+ display technology types and related tricks. This database is something you should check out even if you’re not looking for a new way to display things right now, however, for its sheer educational and entertainment value alone.

[Blair] doesn’t just provide a list of links, like the “awesome-X” directories we see a lot of. Each entry is a small story that goes into detail on what makes the technology tick, its benefits and fundamental limitations, linking to illustrative videos where appropriate. It’s as if this guide is meant to give you an extensive learning course on all the ways you can visualize things on your creative journey. All of these categories have quite a few examples to draw from, highlighting individual artworks that have made use of any technology or trick in a particular way.

If you’re ever wondered about the current state of technology when it comes to flexible or transparent displays, or looked for good examples of volumetric projection done in a variety of ways, this is the place to go. It also talks about interesting experimental technologies, like drone displays, plasma combustion or scanning fiber optics. Overall, if you’re looking to spend about half an hour learning about all the ways there are to visualize something, this database is worth a read. And, if there’s a display technology the author might’ve missed and you know something about, contributions are welcome!

Someone setting out to compile information about an extensive topic is always appreciated, and helps many hackers on their path. We’ve seen that done with 3D printer resin settings and SMD part codes, to name just a few. What’s your favourite hacker-maintained database?