Audio field emission map

Audio Sound Capture Project Needs Help

When you are capturing audio from a speaker, you are rarely capturing the actual direct output of such a system. There are reflections and artifacts caused by anything and everything in the environment that make it to whatever detector you might be using. With the modern computation age, you would think there would be a way to compensate for such artifacts, and this is what [d.fapinov] set out to do.

[d.fapinov] has put together a code base for simulating and reversing environmental audio artifacts made to rival systems, entirely orders of magnitude higher in cost. The system relies on similar principles used in radio wave antenna transmission to calculate the audio output map, called spherical harmonic expansion. Once this map is calculated and separated from outside influence, you can truly measure the output of an audio device.

The only problem is that the project needs to be tested in the real world. [d.fapinov] has gotten this far but is unable to continue with the project. A way to measure audio from precise locations around the output is required, as well as the appropriate control for such a device.

Audio enthusiasts go deep into this tech, and if you want to become one of them, check out this article on audio compression and distortion.

An Audio Brick For Your Smart Home

If you’ve ever wanted to pump sound to all the rooms of your house, you might use any one of a number of commercial solutions. Or, you could go the more DIY route and whip up something like the Esparagus Audio Brick built by [Andriy]. 

The concept is simple—it’s a small unit, roughly the size of a brick, which streams high-quality audio. It’s based around an ESP32, which pulls in digital audio over Wi-Fi or Ethernet. The microcontroller is hooked up to a TAS5825M DAC, which comes with a built-in amplifier for convenience. The Esparagus is designed for integration with Home Assistant, allowing for easy control as part of a smart home setup. It’s also compatible with Spotify Connect, AirPlay, and Snapcast—the latter of which provides excellent sync when using multiple units across several rooms.

Design files are available on Github for the curious. We’ve seen other neat projects in this space, before, too—like the charmingly-named OtterCast. Video after the break.

Continue reading “An Audio Brick For Your Smart Home”

Know Audio: Lossy Compression Algorithms And Distortion

In previous episodes of this long-running series looking at the world of high-quality audio, at every point we’ve stayed in the real world of physical audio hardware. From the human ear to the loudspeaker, from the DAC to measuring distortion, this is all stuff that can happen on your bench or in your Hi-Fi rack.

We’re now going for the first time to diverge from the practical world of hardware into the theoretical world of mathematics, as we consider a very contentious topic in the world of audio. We live in a world in which it is now normal for audio to have some form of digital compression applied to it, some of which has an effect on what is played back through our speakers and headphones. When a compression algorithm changes what we hear, it’s distortion in audio terms, but how much is it distorted and how do we even measure that? It’s time to dive in and play with some audio files. Continue reading “Know Audio: Lossy Compression Algorithms And Distortion”

Attack Turns Mouse Into Microphone

As computer hardware gets better and better, most of the benefits are readily apparent to users. Faster processors, less power consumption, and lower cost are the general themes here. But sometimes increased performance comes with some unusual downsides. A research group at the University of California, Irvine found that high-performance mice have such good resolution that they can be used to spy on a user’s speech or other sounds around them.

The mice involved in this theoretical attack need to be in the neighborhood of 20,000 dpi, as well as having a relatively high sampling rate. With this combination it’s possible to sense detail fine enough to resolve speech from the vibrations of the mouse pad. Not only that, but the researchers noted that this also enables motion tracking of people in the immediate vicinity as the vibrations caused by walking can also be decoded. The attack does require a piece of malware to be installed somewhere on the computer, but the group also theorize that this could easily be done since most security suites don’t think of mouse input data as particularly valuable or vulnerable.

Even with the data from the mouse, an attacker needs a sophisticated software suite to be able to decode and filter the data to extract sounds, and the research team could only extract around 60% of the audio under the best conditions. The full paper is available here as well. That being said, mice will only get better from here so this is certainly something to keep an eye on. Mice aren’t the only peripherials that have roundabout attacks like this, either.

Thanks to [Stephen] for the tip!

Continue reading “Attack Turns Mouse Into Microphone”

A Record Lathe For Analog Audio Perfection

It’s no secret that here at Hackaday we’ve at times been tempted to poke fun at the world of audiophiles, a place where engineering sometimes takes second place to outright silliness. But when a high quality audio project comes along that brings some serious engineering to the table we’re all there for it, so when we saw [Slyka] had published the files for their open source record lathe, we knew it had to be time to bring it to you.

Truth be told we’ve been following this project for quite a while as they present tantalizing glimpses of it on social media, so while as they observe, documentation is hard, it should still be enough for anyone willing to try cutting their own recordings to get started. There’s the lathe itself, the controller, the software, and a tool for mapping EQ curves. It cuts in polycarbonate, though sadly there doesn’t seem to be a sound sample online for us to judge.

If you’re hungry for more this certainly isn’t the first record lathe we’ve brought you, and meanwhile we’ve gone a little deeper into the mystique surrounding vinyl.

Continue reading “A Record Lathe For Analog Audio Perfection”

The Electret Preamp You Might Need

Electret capsules can be found in some of the highest quality microphones for studio use, as well as in some of the very cheapest microphone capsules on the market. More care and attention has gone into the high-end capsule and its associated circuitry than the cheap one, but is it still possible to get good quality from something costing under a dollar? [Mubarak Basha] thinks so, and has designed a preamp circuit to get the best from a cheap electret capsule.

These capsules may be cheap, but with the addition of a low voltage supply, a resistor, and a capacitor, their internal FET delivers a decent enough input to many a project. To improve on that will need a bit of effort, and in this the preamp delivers by taking care to match impedance, impose a carefully chosen frequency response, and just the right gain to derive a line level output from the electret’s level. It’s hardly a complex circuit, but that’s not always necessary.

As always in these situations, without appropriate test equipment it’s difficult to gauge quality. We’d say this though, if you make one of these and it falls short, you won’t have spent much. Meanwhile if you’re curious about electrets, here’s our guide.

2025 Component Abuse Challenge: The Sweet Sound Of A Choking Transformer

The Component Abuse Challenge is dragging all sorts of old, half-forgotten hacks out of the woodwork, but this has got to be the most vintage: [KenS] started using a transformer as a variable choke on his speakers 55 years ago.

The hack is pretty bone-dead simple. A choke is an inductor in an audio (or any other) circuit designed to, well, choke off higher-than-desired frequencies. We featured a deep dive a few years back if you’re interested. An inductor is a coil of wire, usually (but not necessarily) wound around a core of iron or ferrite. A transformer? Well, that’s also a coil of wire around a core… plus an extra coil of wire. So when [KenS], back in his salad days, had a tweeter that a was a little too tweety, and no proper choke, he grabbed a transformer instead.

This is where inspiration hit: sure, if you leave the second winding open, the transformer acts like a standard choke. What happens if you short that second winding? Well, you dampen the response of the first winding, and it stops choking, to the point that it acts more like a straight wire. What happens if you don’t short the second winding, but don’t leave it wide open? [KenS] stuck a potentiometer on there, and found it made a handy-dandy variable choke with which to perfectly tune the tone response of his speakers. Changing the resistance changes the rate at which high frequencies are choked off, allowing [KenS] to get the perfect frequency response with which to rock out to Simon & Garfunkel, The Carpenters and The Guess Who. (According to the Billboard Top 100 for 1970, those are who you’d be listening to if you had conventional tastes.)

While we can’t say the transformer is really being tortured in this unusual mode, it’s certainly not how it was designed, so would qualify for the “Junk Box Substitutions” category of the Component Abuse Challenge. If you’ve made similar substitutions you’d like to share, don’t wait another 55 years to write them up– the contest closes November 11th.

Transformer image: Hannes Grobe, CC BY-SA 4.0.