An exploded view of an electrostatic motor from manufacturer C-Motive. There is a silvery cylinder on the left, two half silver and half golden disks on either side and two thinner gold disks in the center. A square mountin plate is on the right hand side next to one of the silver/gold disks.

Electrostatic Motors Are Making A Comeback

Electrostatic motors are now common in MEMS applications, but researchers at the University of Wisconsin and spinoff C-Motive Technologies have brought macroscale electrostatic motors back. [via MSN/WSJ]

While the first real application of an electric motor was Ben Franklin’s electrostatically-driven turkey rotisserie, electromagnetic type motors largely supplanted the technology due to the types of materials available to engineers of the time. Newer dielectric fluids and power electronics now allow electrostatic motors to be better at some applications than their electromagnetic peers.

The main advantage of electrostatic motors is their reduced critical materials use. In particular, electrostatic motors don’t require copper windings or any rare earth magnets which are getting more expensive as demand grows for electrically-powered machines. C-Motive is initially targeting direct drive industrial applications, and the “voltage driven nature of an electrostatic machine” means they require less cooling than an electromagnetic motor. They also don’t use much if any power when stalled.

Would you like a refresher on how to make static electricity or a deeper dive on how these motors work?

Ben Franklin’s Weak Motor And Other Forgotten Locomotion

Most of the electric motors we see these days are of the electromagnetic variety, and for good reason: they’re powerful. But there’s a type of motor that was invented before the electromagnetic one, and of which there are many variations. Those are motors that run on high voltage, and the attraction and repulsion of charge, commonly known as electrostatic motors.

Ben Franklin — whose electric experiments are most frequently associated with flying a kite in a thunderstorm — built and tested one such high-voltage motor. It wasn’t very powerful, but was good enough for him to envision using it as a rotisserie hack. Food is a powerful motivator.

What follows is a walk through the development of various types of these motors, from the earliest ion propelled ones to the induction motors which most have never heard of before, even an HV hacker such as yours truly.

Continue reading “Ben Franklin’s Weak Motor And Other Forgotten Locomotion”

Conventional Current Vs. Electron Current

Electric current comes in many forms: current in a wire, flow of ions between the plates of a battery and between plates during electrolysis, as arcs, sparks, and so on. However, here on Hackaday we mostly deal with the current in a wire. But which way does that current flow in that wire? There are two possibilities depending on whether you’re thinking in terms of electron current or conventional current.

Electron current vs. conventional current
Electron current vs. conventional current

In a circuit connected to a battery, the electrons are the charge carrier and flow from the battery’s negative terminal, around the circuit and back to the positive terminal.

Conventional current takes just the opposite direction, from the positive terminal, around the circuit and back to the negative terminal. In that case there’s no charge carrier moving in that direction. Conventional current is a story we tell ourselves.

But since there is such a variety of forms that current comes in, the charge carrier sometimes does move from the positive to the negative, and sometimes movement is in both directions. When a lead acid battery is in use, positive hydrogen ions move in one direction while negative sulfate ions move in the other. So if the direction doesn’t matter then having a convention that ignores the charge carrier makes life easier.

Saying that we need a convention that’s independent of the charge carrier is all very nice, but that seems to be a side effect rather than the reason we have the convention. The convention was established long before there was a known variety of forms that current comes in — back even before the electron, or even the atom, was discovered. Why do we have the convention? As you’ll read below, it started with Benjamin Franklin.

Continue reading “Conventional Current Vs. Electron Current”

A Quick History Of The Battery

[Colin] tells us it all started with [Benjamin Franklin]’s battery of capacitors. It was a bunch of leyden jars hooked together in series and there wasn’t even chemistry involved yet, but the nomenclature stuck and it wasn’t long before it evolved into the word we use today.

For the word to change, things got chemical. [Alessandro Volta] introduces his voltaic pile. Once scientists latched onto the idea of a stable reaction giving a steady stream of magic pixies for them to play with, it wasn’t long before the great minds were turning their attention to improving this new technology.

In the classic game of one-upmanship loved by technical people all over, we quickly skip forward to the modern era. An era where no man is unburdened with the full weight of constant communication. It’s all thanks to a technology that’s theoretically unchanged from that first pile. Video after the break.

Continue reading “A Quick History Of The Battery”

History Of The Capacitor – The Pioneering Years

The history of capacitors starts in the pioneering days of electricity. I liken it to the pioneering days of aviation when you made your own planes out of wood and canvas and struggled to leap into the air, not understanding enough about aerodynamics to know how to stay there. Electricity had a similar period. At the time of the discovery of the capacitor our understanding was so primitive that electricity was thought to be a fluid and that it came in two forms, vitreous electricity and resinous electricity. As you’ll see below, it was during the capacitor’s early years that all this changed.

The history starts in 1745. At the time, one way of generating electricity was to use a friction machine. This consisted of a glass globe rotated at a few hundred RPM while you stroked it with the palms of your hands. This generated electricity on the glass which could then be discharged. Today we call the effect taking place the triboelectric effect, which you can see demonstrated here powering an LCD screen.

Continue reading “History Of The Capacitor – The Pioneering Years”