Making Beer Like It’s 1574, For Science And Heritage

Are you interested in the history of beer, food science, or just a fan of gathering “um, actually” details about things? Well you’re in for a treat because FoodCult (exploring Food, Culture, and Identity in early modern Ireland) has a fantastic exhibition showcasing their recreation of beer last brewed in the sixteenth century by putting serious scientific work into it, and learning plenty in the process.

A typical historical beer of middling strength was around 5% alcohol by volume, similar to a modern-day lager.

The recipes, equipment and techniques are straight from what was used at Dublin Castle in the late 1500s. This process yielded very interesting insights about what beer back then was really like, how strong it was, and what was involved in the whole process.

Documentation from the era also provides cultural insight. Beer was often used to as payment and provided a significant amount of dietary energy. Dublin Castle, by the way, consumed some 26,000 gallons per year.

In many ways, beer from back then would be pretty familiar today, but there are differences as well. Chief among them are the ingredients.

While the ingredients themselves are unsurprising in nature, it is in fact impossible to 100% recreate the beer from 1574 for a simple reason: these ingredients no longer exist as they did back then. Nevertheless, the team did an inspired job of getting as close as possible to the historical versions of barley, oats, hops, yeast, and even the water. Continue reading “Making Beer Like It’s 1574, For Science And Heritage”

Why Do Brits Drink Warm Beer?

Traveling through mainland Europe on a British passport leads you to several predictable conversations. There’s Marmite of course, then all the fun of the Brexit fair, and finally on a more serious note, beer. You see, I didn’t know this, but after decades of quaffing fine ales, I’m told we do it wrong because we drink our beer warm. “Warm?”, I say, thinking of a cooling glass of my local Old Hooky which is anything but warm when served in an Oxfordshire village pub, to receive the reply that they drink their beers cold. A bit of international deciphering later it emerges that “warm” is what I’d refer to as “cold”, or in fact “room temperature”, while “cold” in their parlance means “refrigerated”, or as I’d say it: “Too cold to taste anything”. Mild humour aside there’s clearly something afoot, so it’s time to get to the bottom of all this. Continue reading “Why Do Brits Drink Warm Beer?”

Arduino And The Other Kind Of Homebrew

Usually, when we are talking about homebrew around here, we mean building your own equipment. However, most other people probably mean brewing beer, something that’s become increasingly popular as one goes from microbreweries to home kitchen breweries. People have been making beer for centuries so you can imagine it doesn’t take sophisticated equipment, but a little automation can go a long way to making it easier. When [LeapingLamb] made a batch using only a cooler, a stock pot, and a propane burner, he knew he had to do something better. That’s how Brew|LOGIC was born.

There are many ways to make beer, but Brew|LOGIC focuses on a single vessel process and [LeapingLamb] mentions that the system is akin to a sous vide cooker, keeping the contents of the pot at a specific temperature.

Honestly, though, we think he’s selling himself a bit short. The system has a remote application for control and is well-constructed. This isn’t just a temperature controller thrown into a pot. There’s also a pump for recirculation.

The common stock pot gets some serious modifications to hold the heating element and temperature probe. It also gets some spring-loaded clamps to hold the lid down. Expect to do a lot of drilling.

The electronics uses an Arduino, a Bluetooth board, and some relays (including a solid state relay). The finished system can brew between 5 and 15 gallons of beer at a time. While the system seems pretty good to us, he did list some ideas he has for future expansion, including valves, sensors for water level and specific gravity, and some software changes.

After reading that the system was similar to a sous vide cooker, we wondered if you could use a standard one. Turns out, you can. If you want to make better beer without electronic hacking, there’s always the genetic kind.

Making A Small-Scale Brewery With A Raspberry Pi And Python

No doubt many Hackaday readers will have tried their hand at home brewing. It’s easy enough, you can start with a can of hopped malt extract and a bag of sugar in a large bucket in your kitchen and achieve a decent enough result. Of course, once you get the taste it’s a field of infinite possibilities, so many enthusiasts go further into the realm of beer making with specialty ingredients and carefully controlled mash tuns.

Such an inductee into the brewery arts is [Christopher Aedo], who has documented his automated brewing system driven by a Raspberry Pi running CraftBeerPi. And it’s an impressive setup, with boil kettle, mash tun, and heat exchanger, a 5KW heating element, and all associated valves, pipes, pumps, and sensors. This ensures consistency and fine control over temperature over the long-term at all stages of the brew, something that would be very difficult to achieve manually at this scale.

The whole brewery is mounted on a cart for portability and has been used for a lot of brew cycles of many different styles. We can’t help a touch of envy at the array of beer taps in his kitchen.

Over the years we’ve brought you a few brewing projects. Another Pi-based setup graced these pages in 2012, as did a brewery using a Lego Mindstorms controller. Top marks go though to the brewer who fought his beer belly through brewing machinery powered by an exercise bike.

Via Recantha.

IoT Device Pulls Its Weight In Home Brewing

floating-square
The iSpindel floating in a test solution.

Brewing beer or making wine at home isn’t complicated but it does require an attention to detail and a willingness to measure and sanitize things multiple times, particularly when tracking the progress of fermentation. This job has gotten easier thanks to the iSpindel project; an ESP8266 based IoT device intended as a DIY alternative to a costly commercial solution.

Hydrometer [Source: grapestompers.com]

Tracking fermentation normally involves a simple yet critical piece of equipment called a hydrometer (shown left), which measures the specific gravity or relative density of a liquid. A hydrometer is used by winemakers and brewers to determine how much sugar remains in a solution, therefore indicating the progress of the fermentation process. Using a hydrometer involves first sanitizing all equipment. Then a sample is taken from the fermenting liquid, put into a tall receptacle, the hydrometer inserted and the result recorded. Then the sample is returned and everything is cleaned. [Editor (and brewer)’s note: The sample is not returned. It’s got all manner of bacteria on/in it. Throw those 20 ml away!] This process is repeated multiple times, sometimes daily. Every time the batch is opened also increases the risk of contamination. Continue reading “IoT Device Pulls Its Weight In Home Brewing”

Hackaday Prize Entry: Coffee Machine Grows In Complexity With No Sign Of Stopping

In Star Trek, there is a race of cyborgs with a drive to slowly assimilate all sentient life. Their aesthetic is not far off from the one [Ronald]’s ever expanding coffee machine is taking on. One has to wonder, what dark purpose would bring the Borg into existence? Where did they start? If [Ronald] doesn’t get a satisfying cup of coffee soon, we may find out.

We covered the first iteration of his brewing machine in 2013. We like to imagine that he’s spent many sleepless, heavily caffeinated days and nights since then to arrive at version 2. This version is a mechanical improvement over his original Rube Goldberg contraption. On top of that, it has improved electronics and code, with a color screen reminiscent of industrial control panels.

He’s also working on something called, “AutoBaristaScript(TM),” which attempts to hold the entire universe of pour-over coffee within its clutches. We don’t know when he’ll stop, but when he does finally create that perfect cup, what’s left of the world will breathe easier. They’ll also drink good coffee.

 

Editor’s Note: The Borg do not necessarily want to assimilate all sentient life as an end unto itself. The Kazon were deemed unworthy of assimilation (VOY: Mortal Coil). The Borg are driven towards perfection, accomplished by adding technological and biological distinctiveness to their own.

Bubble Catcher Watches Your Booze Burp

Making your own booze involves a lot of sitting around waiting for things to happen, like waiting for the fermentation process to finish so you can get on with bottling and drinking it. That involves watching the bubbles in the airlock: once the frequency of the bubbles falls below a certain level, your hooch is ready for the next step.

[Waldy45] decided to automate this process by building a bubble catcher that measures the frequency of bubbles passing through the airlock. He did this using an optocoupler, a combination of LED and light sensor that changes resistance when something passes between them. You can’t see it in the image, but the horseshoe-shaped optocoupler is slotted around the thin neck in the bubble tube to sense when a bubble passes through.

The optocoupler is connected to an Arduino, running a bit of code that generates an interrupt when the optocoupler is triggered. At the moment, this just outputs an average time between bubbles to the serial port, but [Waldy45] is looking to add an ESP8266 to wirelessly connect the Arduino and contact him when the bubble frequency falls, indicating that the booze is ready for bottling.

We’ve seen a couple of over the top beer breweries before (here and here), but none of them have automated the actual fermentation stage, so something like this would definitely be an addition. Cheers!