Enforce Speed Limits With A Rusty Bike

They say you can’t manage what you can’t measure, and that certainly held true in the case of this bicycle that was used to measure the speed of cars in one Belgian neighborhood. If we understand the translation from Dutch correctly, the police were not enforcing the speed limit despite complaints. As a solution, the local citizenry built a bicycle with a radar gun that collected data which was then used to convince the police to enforce the speed limit on this road.

The bike isn’t the functional part of this build, as it doesn’t seem to have been intended to move. Rather, it was chosen because it is inconspicuous (read: rusty and not valuable) and simply housed the radar unit and electronics in a rear luggage case. The radar was specially calibrated to have less than 1% error, and ran on a deep cycle lead acid battery for around eight days. Fitting it with an Arduino-compatible shield and running some software (provided on the github page) is enough to get it up and running.

This is an impressive feat of citizen activism to provide the local police with accurate data to change a problem in a neighborhood. Not only was the technology put to good use, but the social engineering involved with hiding expensive electronics in plain sight with a rusty bicycle is a step beyond what we might have thought of as well.

Thanks to [Jo_elektro] for the tip!

Takata’s Deadly Airbags: An Engineering Omnishambles

Engineers are, for the time being, only human. This applies even more so to executives, and all the other people that make up a modern organisation. Naturally, mistakes are made. Some are minor, while others are less so. It’s common knowledge that problems are best dealt with swift and early, and yet so often they are ignored in the hopes that they’ll go away.

You might have heard the name Takata in the news over the last few years. If that name doesn’t ring a bell you’ve likely heard that there was a major recall of airbag-equipped vehicles lately. The story behind it is one of a single decision leading to multiple deaths, scores of injuries, a $1 billion fine, and the collapse of a formerly massive automotive supplier.

Continue reading “Takata’s Deadly Airbags: An Engineering Omnishambles”

Depotting An Ancient Car Computer

Carburettors were king for decades, until the onward march of technology brought electronic fuel injection to the fore. During their final years, a handful of automakers experimented with computer control of the humble carb, trying to squeeze out every last bit of efficiency and reduce pollution as much as possible. [NeXT] happened to own a vehicle fitted with AMC’s Computerized Engine Control system, and decided to see what made it tick.

This was easier said than done due to choices made by Ford, who manufactured the engine computer for AMC. Unlike modern ECUs which usually feature a metal case fitted with rubber gaskets, the CEC computer was potted in epoxy. [NeXT] was able to de-pot the circuit board by placing it in a stock pot of boiling water, and then slowly peeling the epoxy away.

With the potting removed, it was possible to begin reverse engineering the board. The main microcontroller is an Intel 8049, of the MCS-48 family. The board uses through-hole technology, and only features a handful of other small ICs.

It’s always interesting to look back at forgotten technologies and see how things were done in decades past. [NeXT] hopes to keep working on the project, intending to dump the ROM from the CEC module and build a replacement computer with an Arduino. It’s possible to build your own ECU from scratch, so we’re looking forward to seeing [NeXT]’s AMC Eagle running on modern silicon real soon.

Turn Your Car Into A Simulator

Video games, while entertaining to be sure, are a great way to experience things that could not easily be recreated in real life. Shooting aliens on a giant ring in space is an obvious example, but there are some more realistic examples that video games make much more accessible, such as driving a race car. You can make that experience as realistic as you want, too, and can even go as far as using a real car as your controller.

All modern cars use a communication system to allow their various modules to talk to one another. Fuel injection, throttle position, pedal positions, steering wheel angle, and climate control systems can all communicate on the CAN bus, and by tapping into that information the car can be used as a controller for a video game. Once you plug in to the OBD-II port on a car, you’ll need a piece of software to decode all of that information. [Andrew] uses uinput, a tool that allows Linux machines to take any input signal and map it in any way that can be programmed.

The build also includes the use of an integrated pico projector, allowing the car to be parked and turned into a simulator at any time. It’s similar to another project which used a Mazda instead of a Chevrolet Volt, but it just goes to show how straightforward it can be to take information from the CAN bus of a modern car.

Continue reading “Turn Your Car Into A Simulator”

Volkswagen EGon Is A Rolling Electric Car Circuit Sculpture

Over the past few decades of evolution, cars have grown to incorporate a mind-boggling number of electric components. From parking distance sensors, to the convenience of power locks and windows, to in-car entertainment systems rivaling home theaters. Normally this interconnected system’s complexity is hidden between exterior sheet metal and interior plastic trim, but a group of students of Volkswagen’s vocational training program decided to show off their internal beauty by building the Volkswagen eGon exhibit.

Seeing a super minimalist Volkswagen electric Golf on the move (short Twitter video embedded below) we are immediately reminded of circuit sculptures. We saw some great projects in our circuit sculpture contest, but the eGon shows what can be done with the resources of a Volkswagen training center. Parts are bolted to the car’s original structure where possible, the rest were held in their representative positions by thin metal tube frames. At this scale, they look just like the brass rods used in small circuit sculptures! Certain component enclosures were replaced with transparent pieces, or had a window cut into them for visibility.

This exhibit was built for IdeenExpo, an event to expose students to science and technology. Showing them what’s under the cover in this “see-through car” with internal components tagged with QR codes pointing them to additional information. The number of electronic modules inside a car is only going to continue rising with the coming wave of electric and/or self-driving cars. Even if the timing of their arrival is debatable, we know we’ll need brain power helping to answer questions we don’t even know to ask yet. The eGon is doing a great job attracting attention and inviting bright young minds to participate.

Continue reading “Volkswagen EGon Is A Rolling Electric Car Circuit Sculpture”

Quick And Dirty Immobilizer Hack Lets You Use Cheaper Dumb Keys

Car enthusiasts can find themselves in a pickle if they’re into cars from the 80s and 90s. These vehicles are much beloved by some, but one can find themselves having to fork out immense amounts of money for repairs and out-of-production parts. Once a car passes that 15 year milestone, suddenly manufacturer support can start to dry up. Even just getting a set of keys can be a problem.

Modern cars tend to use a small chip implanted in the key as a security measure. This chip functions similarly to an RFID chip, being energised by the car’s reader when the driver turns the key in the ignition. If the chip returns the right code, the computer allows the car to start. Getting a new key cut and recoded is expensive, particularly on older cars. Naturally though, there’s a way to hack around the problem.

The trick is to perform surgery on an existing good key, to extract the working chip inside. This chip can then be permanently affixed to the immobilizer’s antenna in the steering column. This allows the driver to use any properly cut “dumb” key to start the car, as the chip will always provide the right signal at startup. It takes some finesse to avoid damaging the delicate chip inside and to know where to look – but with a little work, it’s achievable by even the novice hacker.

It’s a simple hack that can save hundreds of dollars, and is a great way to keep your modern classic on the road for cheap. You can always take things a step further though, and CNC yourself a key from scratch if you’re so inclined.

Three Engines For Every Lada

If you don’t live in a former Eastern Bloc country, odds are that you’ve never seen a Lada driving around your neighborhood. This car is ubiquitous in Russia and its neighboring countries, though, and for good reason: price. Lada gave many people access to affordable transportation who otherwise would have been walking, but this low price means that it’s a great platform for some excellent car hacks as well.

The guys at [Garage 54], an auto shop in Russia, outfitted one of these discount classics with two extra engines. This goes beyond normal bolt-on modifications you typically see to get modest horsepower gains from a daily driver. The crew had to weld a frame extending out of the front of the car to hold all the extra weight, plus fabricate all the parts needed to get the crankshafts on each engine to connect to each other. After that, it was the “simple” job of tuning the engines to all behave with one another.

This video is really worth watching, as the car was also upgraded with a dually setup on the back with studded tires for extra grip on their ice track. Odds are pretty good that this car isn’t street legal so this is likely the only place they’ll be able to drive it. Other things can be built out of Ladas as well, like lawn mowers for example.

Thanks to [g_alan_e] for the tip!

Continue reading “Three Engines For Every Lada”