What Rhymes With Spice And Simulates Huge Circuits?

Most of us have computers on our desk that would have been considered supercomputers not long ago. We always wonder how many of them get any actual workout other than decoding video. If you want to simulate circuits you may very well start chewing up significant CPU time, so you might consider Xyce, an open source high-performance analog circuit simulator from Sandia National Labs. As you’d expect from a giant government lab it is able to support large scale parallel computing, but will also work on common desktop systems. On Linux, it will do what they call “small-scale parallelism.” In addition, it can deal with simulations of things as diverse as neural networks and power grids.

The code is open source, but oddly you do have to register to download it. Xyce has been around for a bit, but version 7.0 just arrived in April. Many of the changes are to improve compatibility with other Spice programs, notably HSpice.

Continue reading “What Rhymes With Spice And Simulates Huge Circuits?”

Hackaday Links: September 15, 2019

It’s probably one of the first lessons learned by new drivers: if you see a big, red fire truck parked by the side of the road, don’t run into it. Such a lesson appears not to have been in the Tesla Autopilot’s driver education curriculum, though – a Tesla Model S managed to ram into the rear of a fire truck parked at the scene of an accident on a southern California freeway. Crash analysis reveals that the Tesla was on Autopilot and following another vehicle; the driver of the lead vehicle noticed the obstruction and changed lanes. Apparently the Tesla reacted to that by speeding up, but failed to notice the stationary fire truck. One would think that the person driving the car would have stepped in to control the vehicle, but alas. Aside from beating up on Tesla, whose AutoPilot feature seems intent on keeping the market for batteries from junked vehicles fully stocked, this just points out how far engineers have to go before self-driving vehicles are as safe as even the worst human drivers.

The tech press is abuzz today with stories about potential union-busting at Kickstarter. Back in March, Kickstarter employees announced their intent to organize under the Office and Professional Employees International Union (OPEIU). On Thursday, two of the union organizers were fired. Clarissa Redwine, who recently hosted a Hack Chat, was one of those released; both she and Taylor Moore are protesting their terminations as an illegal attempt to intimidate Kickstarter employees and keep them from voting for the union. For their part, Kickstarter management says that both employees and two more were released as a result of documented performance issues during the normal review cycle, and that fourteen employees who are in favor of the union were given raises during this cycle, with three of them having been promoted. There will no doubt be plenty more news about this to come.

Would you pay $900 for a Nixie clock? We wouldn’t, but if you choose to buy into Millclock’s high-end timepiece, it may help soften the blow if you think about it being an investment in the future of Nixie tubes. You see, Millclock isn’t just putting together an overpriced clock that uses surplus Russian Nixies – they’re actually making brand new tubes. Techmoan recently reviewed the new clock and learned that the ZIN18 tubes are not coming from Czech Republic-based Dalibor Farný, but rather are being manufactured in-house. That’s exciting news for Nixie builders everywhere; while Dalibor’s tubes are high-quality products, it can’t hurt to have a little competition in the market. Nixies as a growth industry in 2019 – who’da thunk it?

We ran across an interesting project on Hackaday.io the other day, one that qualifies as a true hack. How much house can you afford? A simple question, but the answer can be very difficult to arrive at with the certainty needed to sign papers that put you on the hook for the next 30 years. Mike Ferarra and his son decided to answer this question – in a circuit simulator? As it turns out, circuit simulators are great at solving the kinds of non-linear simultaneous equations needed to factor in principle, interest, insurance, taxes, wages, and a host of other inflows and outflows. Current sources represent money in, current sinks money paid out. Whatever is left is what you can afford. Is this how Kirchoff bought his house?

And finally, is your parts inventory a bit of a mystery? Nikhil Dabas decided that rather than trying to remember what he had and risk duplicating orders, he’d build an application to do it for him. Called WhatDidIBuy, it does exactly what you’d think; it scrapes the order history pages of sites like Adafruit, Digi-Key, and Mouser and compiles a list of your orders as CSV files. It’s only semi-automated, leaving the login process to the user, but something like this could save a ton of time. And it’s modular, so adding support for new suppliers is a simple as writing a new scraper. Forgot what you ordered from McMaster, eBay, or even Amazon? Now there’s an app for that.

The Augmented Reality Breadboard Of The Future

You’d be hard pressed to find a carpenter who didn’t own a hammer, or a painter that didn’t have a couple of brushes kicking around. Some tools are simply so fundamental to their respective craft that their ownership is essentially a given. The same could be said of the breadboard: if you’re working with electronics on the hobby or even professional level, you’ve certainly spent a decent amount of time poking components and wires into one of these quintessential prototyping tools.

There’s little danger that the breadboard will loose its relevance going forward, but if [Andrea Bianchi] and her team have anything to say about it, it might learn some impressive new tricks. Developed at the Korean Advanced Institute of Science and Technology, VirtualComponent uses augmented reality and some very clever electronics to transform the classic breadboard into a powerful mixed-reality tool for testing and simulating circuits. It’s not going to replace the $3 breadboard you’ve got hiding at the bottom of your tool bag, but one day it might be standard equipment in electronics classrooms.

The short version is that VirtualComponent is essentially a dynamic breadboard. Holes in the same row are still electrically linked like in the classic breadboard, but with two AD75019 cross-point switch arrays and an Arduino in the base, it has the ability to virtually “plug in” components at arbitrary locations as selected by the user. So rather than having to physically insert a resistor, the user can simply tell the software to connect a resistor between two selected holes and the cross-point array will do the rest.

What’s more, many of those components can be either simulated or at least augmented in software. For example, by using AD5241 digital potentiometers, VirtualComponent can adjust the value of the virtual resistor. To provide variable capacitance, a similar trick can be pulled off using an array of real capacitors and a ADG715 digital switch to connect them together; essentially automating what the classic “Decade Box” does. In the demonstration video after the break, this capability is extended all the way out to connecting a virtual function generator to the circuit.

The whole system is controlled by way of an Android tablet suspended over the breadboard. Using the tablet’s camera, the software provides an augmented reality view of both the physical and virtual components of the circuit. With a few taps the user can add or edit their virtual hardware and immediately see how it changes the behavior of the physical circuit on the bench.

People have been trying to improve the breadboard for years, but so far it seems like nothing has really stuck around. Given how complex VirtualComponent is, they’ll likely have an even harder time gaining traction. That said, we can’t help but be excited about the potential augmented reality has for hardware development.

Continue reading “The Augmented Reality Breadboard Of The Future”

Emulate ICs In Python

Most people who want to simulate logic ICs will use Verilog, VHDL, or System Verilog. Not [hsoft]. He wanted to use Python, and wrote a simple Python framework for doing just that. You can find the code on GitHub, and there is an ASCII video that won’t embed here at Hackaday, but which you can view at ASCIInema.

Below the break we have an example of “constructing” a circuit in Python using ICemu:

Continue reading “Emulate ICs In Python”

Circuit Design? Spread The Joy

Accountants and MBAs use spreadsheets to play “what if” scenarios with business and financial data. Can you do the same thing with electronic circuits? The answer–perhaps not surprisingly–is yes.

Consider this simple common emitter amplifier (I modeled it in PartSim, if you’d like to open it):

In this particular case, there are several key design parameters. The beta of the transistor (current gain) is 220. The amplifier has an overall voltage gain of about 3 (30/10). I say about, because unless the transistor is ideal, it won’t be quite that. The supply voltage (Vcc) is 12 volts and I wanted the collector voltage (VC) to idle at 6V to allow the maximum possible positive and negative swing. I wanted the collector current (IC) to be 200mA.

Continue reading “Circuit Design? Spread The Joy”