Museum Shows Off Retro Malware

There’s some debate on which program gets the infamous title of “First Computer Virus”. There were a few for MS-DOS machines in the 80s and even one that spread through ARPANET in the 70s. Even John von Neumann theorized that programs might one day self-replicate. To compile all of these early examples of malware, and possibly settle this question once and for all, [Mikko Hypponen] has started collecting many of the early malware programs into a Museum of Malware.

While unlucky (or careless) users today are confronted with entire hard drive encryption viruses (or worse), a lot of the early viruses were relatively harmless. Examples include Brain which spread via floppy disk, the experimental ARPANET virus, or Elk Cloner which, despite many geniuses falsely claiming that Apples are immune to viruses, infected Mac computers of the 80s. [Mikko] has collected many more from this era that can be downloaded or demonstrated in a browser.

Retrocomputing is an active community, with users keeping gear of this era up and running despite it being 30+ years old. This software, while malicious at the time, is a great look into what the personal computing world was like in its infancy. And don’t forget, if you have a beige computer from a bygone era, you can always load up our Retro Page.

Thanks to [chad] for the tip!

Hacking A USB Port Onto An Old Router

Sometimes hacks don’t have to be innovative to be satisfying. We thought that [daffy]’s instructions and video (embedded below the break) for turning an old WRT54G router into an Internet radio were worth a look even if he’s following a well-traveled path and one that we’ve reported on way back when.

The hack itself is simple. [daffy] locates unused USB data lines, adds in a 5V voltage regulator to supply USB bus power, and then connects it all to a USB sound card. Hardware side, done! And while he doesn’t cover the software side of things in this first video, we know where he’s headed.

The WRT54G router was the first commodity Linux-based router to be extensively hacked, and have open-source firmware written for it. If you’re using OpenWRT or dd-wrt on any of your devices, you owe a debt to the early rootability of the WRT54G. Anyway, it’s a good bet that [daffy] is going to find software support for his USB sound card, but we remain in suspense to see just exactly how the details pan out.

Our favorite WRT54G hack is still an oldie: turning a WRT54G into the brains for a robot. But that was eight years ago now, so surely there’s something newer and shinier. What’s the coolest device that you’ve seen a WRT router hacked into?

Continue reading “Hacking A USB Port Onto An Old Router”

Lady Ada Turns NeXT Equipment Into Something Useful

From the late 80s to the early 90s, [Steve Jobs] wasn’t at Apple. He built another company in the meantime, NeXT Computer, a company that introduced jet black workstations to universities and institutions, developed an incredible emphasis on object-oriented programming, and laid the groundwork for the Unix-ey flavor of Apple’s OS X. Coincidently, there is a lot of old NeXT gear at the Adafruit clubhouse – not that there’s anything wrong with that, we all have our own strange affectations and proclivities. Recently, [Lady Ada] turned one of the strangest components of the NeXT computer ecosystem into something useful: a computer speaker.

The item in question for this build is the NeXT ‘sound box’. When not using the very special NeXT monitor, the NeXT computer connects the monitor, keyboard, and speakers through this odd little box. There are two versions of the NeXT sound box, and peripherals from either version are incompatible with each other. ([Jobs] was known for his sense of design and a desire for a simplified user experience, you know.)

In [Lady Ada]’s initial teardown of the sound box, she discovers a few interesting things about this peripheral. There’s an I2S DAC inside there, connected to an unobtanium DB19 connector. Theoretically, that I2S device could be used to drive the speaker with digital audio. The only problem is the DB19 connector – they’re rare, and [Steve] from Big Mess o’ Wires bought the world’s supply.

Without these connectors, and since it’s only an hour-long show, [Lady Ada] went with the most effective hack. She grabbed a USB audio dongle/card, added a small amplifier, and soldered a few wires onto the power and ground pins of an IC. It’s simple, effective, fast, and turns an awesome looking 30-year-old peripheral into a useful device.

Replacing The CRT In A Vectrex

The Vectrex is a rare beast in the world of retro video games. Introduced in 1982, this was the only video game system to put a monitor right in the console, and it did so for good reason. This was a games system with vector graphics and rotating 3D objects, something that just couldn’t happen on the TV in the family room. A while ago, [John] dug his old Vectrex out of his basement and replaced a faulty logic board. The CRT was still broken, but with a little bit of research and a not-so-ugly kludge, he managed to replace the CRT in a Vectrex.

[John] found someone willing to part with an old CRT online, and after whipping out his credit card, the tube was on his way to his front door. This new tube wasn’t a direct drop in; The original Vectrex had small ears around the edges of the screen that served as mounting points. The new tube had no such ears. Now, a bit of plastic strapping holds the CRT in the chassis. It’s a bit of a kludge, but at least now [John] has a source of Vectrex CRTs.

While the rest of [John]’s repair work didn’t go as well – the Vectrex in question still has all the logic board problems it had when it was taken out of storage. This Vectrex does have a new CRT, and with a bit more work on rehabbing this old machine, it should keep on working for another thirty years.

Whenever you come cross an interesting CRT, make sure you snatch it up. Here’s another offering that uses a tiny screen for some classic MAME action.

Heathkit: Live, Die, Repeat

There is no company that has earned more goodwill from electronic tinkering hobbyists than Heathkit. For more than fifty years, Heathkit has been the measure all other electronic kit manufacturers have been compared to. Kits for everything – from televisions to radios to computer terminals – were all sold by Heathkit, and even now, nearly a quarter century since the last kit left the warehouse, there is still a desire for this manufacturer to rise like a phoenix from the ashes. Heathkit lives once more, and this time it might be for real.

In recent years, Heathkit has had a confusing, if not troubled business plan. The company started manufacturing its signature products – electronic kits of every kind – in 1947. Production of these kits ended in 1992, and the company went on for another few years manufacturing educational materials and lighting controls. In 2011, Heathkit said they were back in the kit business, before shutting down a year later.

In 2013, an official Heathkit Facebook page was launched, a reddit AMA was held, and a mysterious stranger in the Hackaday comments section found a geocache placed by someone at Heathkit in a Brooklyn park. Absolutely nothing happened in 2014, or at least no one cared enough to hire a PI, which brings us to today’s announcement: Heathkit lives yet again.

This morning, the president of Heathkit sent a message to the ‘Heathkit Insiders’ email group explaining the goings on and new happenings:

We’ve designed and developed a wide range of entirely new kit products. We authored the manuals for these kits, complete with the beautiful line art you rely on, preserving and respecting our iconic historic Heathkit style. We developed many new inventions and filed patents on them. We relocated Heathkit, and set up a factory, and a warehouse, and offices, in Santa Cruz, California, near Silicon Valley. We built the back office infrastructure, vendor and supply chain relationships, systems, procedures, operations methods, and well-thought-out corporate structure that a manufacturing company needs to support its customers, to allow us to scale instantly the day we resume major kit sales. All this effort enables us to introduce a fleet of new kits and helps ensure Heathkit can grow, prosper, and continue to bring you great new products for a very long time.

The new Heathkit shop features their newest product, the Explorer Jr. AM Radio Receiver kit, a small kit radio available for $150. It’s actually a rather interesting kit with a nice design and an air variable cap for tuning, just like radios from a century ago. Whether anyone will pay $150 for an AM receiver in this century is another question entirely. The 21st century rebirth of Heathkit doesn’t just mean kits; they’re making apps now, with the first release being a crystal design tool for Android.

Virtually everyone in this little corner of the Internet, from Adafruit to Sparkfun, to Make magazine to everyone with a 3D printer owes a debt to Heathkit. This is the company that first turned DIY electronics into a successful business. Heathkit was the first, and they deserve to be recognized as the pioneers of the field.

The Donner Party were pioneers, too; just because you’re breaking new ground doesn’t mean you’re successful. The Heathkit of the 90s shuttered its doors for a reason. The factors behind the 1992 closing – cheap stuff from China, and the fact that not many people want to build their own electronics – are still with us. Still, the market for DIY electronics may be big enough, and Heathkit’s back catalog may be diverse enough that I won’t have to write another ‘Heathkit dies yet again’ post in a year or so. We can only hope.

VCF East X: The Not Trashy Eighty

The lowly TRS-80 doesn’t get much love in most circles; it’s constantly overshadowed by the popularity of the Apple II or computers that had graphics that weren’t terrible. For [Mike Loewen]’s VCF exhibit, he’s turning his TRS-80 into something good with SD card disk drives and custom graphics adapters.

The -80 in question is a Model 4, the fancy all-in-one version that could run CP/M. The disk drives in this computer were replaced with half-height 5 1/4″ drives, the 200ns RAM was replaced with 100ns RAM and modified to get rid of the wait states, and a hard drive is emulated on a SD card adapter thanks to an add-on from [Ian Mavric].

[Ian] is somewhat prolific in the world of TRS-80s; he reverse engineered the original hi-res graphics board and reimplemented it with video RAM chips of a more modern vintage.

Continue reading “VCF East X: The Not Trashy Eighty”

A Portable KIM-1

The KIM-1 was the first computer to use the 6502, a CPU that would later be found in the Apple, Ataris, Commodores, and the Nintendo Entertainment System. Being the first, the KIM-1 didn’t actually do a whole lot with only 1k of ROM and a bit more than 1k of RAM. This is great news for anyone with an Arduino; you can easily replicate an entire KIM-1, with a keypad and 7-segment display. That’s what [Scott] did, and he put it in an enclosure that would look right at home in a late 70s engineering lab.

The impetus for this build was [Scott]’s discovery of the KIM-Uno, a kit clone of the KIM-1 using an Arduino Pro Mini. The kit should arrive in a few weeks, so until then he decided to see if he could cobble one together with parts he had sitting around.

Inside a handheld industrial enclosure is an Arduino Uno, with a protoshield connecting the keypad and display. The display is an 11-digit, seven-segment display [Scott] picked up at a surplus shop, and the metal dome keypad came from a hamfest.

Getting the software working took a bit of work, but the most important parts are just modifications to the standard Arduino libraries.

Now that [Scott] has a KIM-1 replica, he can program this virtual 6502 one hex digit at a time, run Microchess, or use the entire thing as a programmable calculator.