Triple Zone Clock Tells Time In Style

Although the cutoff for saying ‘Happy New Year’ is somewhere around today, there’s still plenty of time to reminisce about 2022 and all that we accomplished. Hackaday alum [Jeremy Cook] spent much of last year designing and building a triple-zone PCB clock, dubbed the 742 clock. It is called so because of all the 7-segments, and then 42 from the height in millimeters of each PCB. Also because it’s 24 backwards, and if we may be so bold, because 42.

If this looks familiar, it’s because we covered the single-panel version a few months ago. Much like that one, the triple time zone clock is controlled by a single Wemos D1 mini, and the other two panels are chained to the primary board. This version has a frame made of 20/20 extrusion with nice 3D printed caps on the ends to finish off the look.

As with the single-panel clock, this one uses bared-FR4 PCBs to diffuse the LEDs, and the effect looks really nice. We particularly like the capacitive corners that control the clock and the colors, which change throughout the day when left to their own devices. Be sure to check out the build video after the break.

Are you really into LEDs? Consider building a Berlin clock.

Continue reading “Triple Zone Clock Tells Time In Style”

Zen And Glowing Air Bubble Displays

When you work in a medium for long enough, and you learn how it works more and more deeply, you eventually become its master. [Yukio Shinoda] is probably master of the LED bubble display.

She started out with an idea, back in 1994, of a column of water and an array of solenoids to inject air, making patterns in the bubbles. Time passed, and she began to realize these works, first in water and then switching over to glycerine for slower, more predictable, and more spherical bubbles. The latest version realizes her initial vision, after 29 years, with an 8×8 array of nozzles making 3D shapes in the slowly rising columns. Continue reading “Zen And Glowing Air Bubble Displays”

Something’s Rotating In The State Of Denmark: A Clock

If you visit the Copenhagen City Hall, you’ll see an ornate mechanical clock. By itself, this is unremarkable, of course. There are plenty of ornate clocks in city halls around the world, but this one has a fascinating backstory that starts with a locksmith named Jan Jens Olsen. Unfortunately, Jens didn’t actually complete the clock before his death. It would take 12 years to put together the 15,448 individual parts. However, he did manage to see most of the clock that he had been designing for 50 years put together.

Jens was 60 when he started constructing the clock, but the story starts when he was only 25. In Strasbourg, the young locksmith saw an astronomical clock with a perpetual calendar in a cathedral. He was fascinated and returned several times to study the mechanism. Around the age of 30, Jens had moved to watchmaking and had a keen interest in astronomy — he was a founding member of the Danish Astronomical Society. Perhaps it was the combination of these two interests that made it inevitable that he would want to build a precise astronomically-correct clock.

Continue reading “Something’s Rotating In The State Of Denmark: A Clock”

Motion-Activated Clock Only Lights Up On Command

While some of us can fall asleep anywhere from a noisy auditorium to a brightly lit train station, others are more fussy, requiring quiet and dark to nod off. [Craig Lindley] likes to minimize light when he’s trying to sleep, and decided to build himself a simple clock that wouldn’t disturb his rest.

The basic concept was to build a clock that would only display the time on command. In this case, that command would be a wave of a hand in front of the clock. The build is based around a Lilygo ESP32 T-Display unit, which combines the ESP32 with an LCD display and a battery management system. The ESP32’s WiFi connection provides accurate time via querying an NTP server. A passive infrared motion sensor is used to detect the motion of the user’s hand in front of the clock.

While all kinds of clocks and clock radios are available out there, few are motion activated. [Craig]’s work is a great demonstration of building your own solutions to your problems. We’ve seen some other neat motion-sensing convenience hacks before, too!

A clock based on magnetic viewing film

Magnet Clock Makes Field Lines Visible

The traditional method for visualizing magnetic fields, which your science teacher probably demonstrated at some point, is to sprinkle some iron filings onto a piece of paper and hold it over a magnet. It’s a bit of a messy process though, and nowadays there’s a more modern method available in the form of magnetic viewing films. These work thanks to tiny nickel particles suspended in an oily medium, and come in very handy if you want to examine, say, the magnetic field pattern of a DC electric motor. [Moritz v. Sivers] had another idea for this magic material however, and used it to make a Magnet Viewing Clock.

A DIY clock, opened upThe clock’s front panel looks very similar to a large monochrome LCD, but is actually a big slab of magnetic viewing film. Four disks are mounted behind it, each carrying number-shaped magnetic stickers that are cleverly hidden from view. An Arduino Uno keeps track of time through a real-time clock and operates four stepper motors that rotate the number wheels. When they move into position, their magnetic stickers become visible through the film and you can read the time.

The clock’s mechanical parts are 3D printed, while the digits were cut from a sheet of sticky magnetic foil using a vinyl cutter. If you’d like to try making something similar you’re in luck: [Moritz] made the design files and the Arduino sketch available on his GitHub page. Magnetic viewing films are pretty neat things to play with anyway, and can even be used to read hidden messages.

Continue reading “Magnet Clock Makes Field Lines Visible”

HUD-Like Clock Is A Transparent Time Display

While we have all types of displays these days, there’s something special about those that appear to float in the air. This HUD clock from [Kiwi Bushwalker] is one such example.

The build relies on four 8×8 LED matrixes to display the four digits that make up the time, run by the MAX7219 driver chip. However, the LEDs aren’t viewed directly — that would be too simple. Instead, the matrixes shoot their light up at an angle towards a tilted piece of clear acrylic. This creates a “heads-up display” look where the numbers appear to float in the air.  The clock gets accurate time from an NTP time server over WiFi, thanks to the ESP32 microcontroller that runs the show.

It’s a straightforward clock build in many ways, but we particularly like the use of the heads-up display technique. It’s almost surprising we don’t see these projects more often, for things like car dashboard displays or targeting womp rats in a T-16 landspeeder. If you’ve been whipping up your own HUD projects, don’t hesitate to notify the tipsline!

Continue reading “HUD-Like Clock Is A Transparent Time Display”

A dekatron-based clock with a GPS receiver and a plastic dinosaur on top

Dekatron Clock Tells The Time, Sans Semiconductors

Over the years, there have been several memory and display technologies that served a particular niche for a while, only to be replaced and forgotten when a more suitable technology came along. One of those was the dekatron: a combination memory and display tube that saw some use in the 1950s and ’60s but became obsolete soon after. Their retro design and combined memory/display functionality make them excellent components for today’s clock hackers however, as [grobinson6000] demonstrates in his Dekaclock project.

A dekatron tube is basically a neon tube with ten cathodes arranged in a circle. Only one of them is illuminated at any time, and you can make the tube jump to the next cathode by applying pulses to its pins. The Dekaclock uses the 50 Hz mains frequency to generate 20 ms pulses in one tube; when it reaches 100 ms, it triggers the next tube that counts hundreds of ms, which triggers another one that counts seconds, and so on with minutes and hours.

The Dekaclock uses no semiconductors at all: the entire system is built from glass tubes and passive components. However, [grobinson6000] also built an auxiliary system, full of semiconductors, that makes the clock a bit easier to use. It sits on top of the Dekaclock and automatically sets the correct time using a GPS receiver. It also keeps track of the time displayed by the dekatrons, and tells you how far they have drifted from their initial setting.

Both systems are housed in sleek wooden cases that perfectly fit the tubes’ retro aesthetic. [grobinson6000] was inspired to make the Dekaclock after watching another dekatron clock we featured earlier, and designed the GPS receiver to work alongside it. Dekatrons are surprisingly versatile devices: you can use them to make anything from internet speed gauges to kitchen timers.

Continue reading “Dekatron Clock Tells The Time, Sans Semiconductors”