A Timepiece Straight Out Of Back To The Future

[Stephen Holdaway] needed a desk clock, and decided to whip something up from scratch. The result is a beautiful tribute to the DeLorean’s time circuits from legendary 1985 film Back to the Future.

We say it’s a tribute rather than an exact replica, as it only implements the “present time” section of the time circuits. However, for those of us without time machines, that’s more than enough. In any case, the build is a very faithful recreation. It uses a lovely sheet metal enclosure complete with era-appropriate sticky labels.

Naturally, the numerals are all shown on green segment displays, though [Stephen] used 16-segment devices instead of the more typical 7-segment parts. What really helps add to the look is the shaded acrylic windows, which adds a very nice effect.

It’s a nice tribute piece that any fan would instantly recognize. We’ve seen some other great builds, too, like this replica of the RC controller that first gets the DeLorean up to 88 mph. If you’ve been whipping up your own neat prop project, don’t hesitate to hit us up on the tipsline!

Weasley Clock For Magically Low Cost

For those unfamiliar with the details of the expansive work of fiction of Harry Potter, it did introduce a few ideas that have really stuck in the collective conscious. Besides containing one of the few instances of time travel done properly and introducing a fairly comprehensive magical physics system, the one thing specifically that seems to have had the most impact around here is the Weasley family clock, which shows the location of several of the characters. We’ve seen these built before in non-magical ways, but this latest build seeks to drop the price tag on one substantially.

To do this, the build relies on several low-cost cloud computing solutions and smartphone apps to solve the location-finding problem. The app is called OwnTracks and is an open-source location tracker which can report data to any of a number of services. [Simon] sends the MQTT data to a cloud-based solution called HiveMQCloud, but you could send it anywhere in principle. With the location tracking handled, he turns to some very low-cost Arduinos to control the stepper motors which point the clock hands to the correct locations on the face.

While the build does rely on a 3D printer for some of the internal workings of the clock, this does bring the cost down substantially when compared to other options. Especially when compared to this Weasley family clock which was built into a much larger piece of timekeeping equipment, having an option for a lower-cost location-tracking clock face like this one is certainly welcome.

ESP32 LED Eyes Help Keep Toddler In Bed

We’ve seen a lot of custom clocks here at Hackaday, many of which have pushed the traditional definition of the timepiece to its absolute limit. But for all their wild designs, most of them do have something in common: they assume you can actually read a clock and understand the concept of time. But what if you’re developing a clock for a toddler who’s only just coming to terms with such heady ideas?

The answer, at least for [Riley Parish] is a set of 3D printed eyes that are illuminated with either yellow or green LEDs depending on whether or not it’s time to get out of bed. More than just the color of the light, the eye design (which is embedded into the rear of the front panel) switches between wide-open and tightly shut depending on the time of day.

Internally the device is very simple, with the 5 mm LEDs and their associated resistors connected directly to the digital out pins on an ESP32 development board. While the dual-core microcontroller is admittedly pretty overkill for flipping some LEDs every 12 hours or so, the firmware does at least pull the current time from NTP — plus the powerful MCU offers plenty of room to grow. A web front-end to configure the device or check its current status would only be a few more lines of code.

As it so happens, this isn’t the first toddler timepiece to grace these pages. Perhaps unsurprisingly, those previous examples also used changing color to help indicate the passage of time.

Faceless Clock Makes You Think Twice About How It Works

We love projects that make you do a double-take when you first see them. It’s always fun to think you see one thing, but then slowly realize everything is not quite what you expected. And this faceless analog clock is very much one of those projects.

When we first saw [Shinsaku Hiura]’s “Hollow Clock 4,” we assumed the trick to making it look like the hands were floating in space would rely on the judicious use of clear acrylic. But no, this clock is truly faceless — you could easily stick a finger from front to back. The illusion is achieved by connecting the minute hand to the rim of the clock, and rotating the whole outer circumference through a compact 3D printed gear train. It’s a very clever mechanism, and it’s clear that it took a lot of work to optimize everything so that the whole look of the clock is sleek and modern.

But what about the hour hand? That’s just connected to the end of the minute hand at the center of the clock’s virtual face, so how does that work? As it is with most things that appear to be magical, the answer is magnets. The outer rim of the clock actually has another ring, this one containing a pair of neodymium magnets. They attract another magnet located in the very end of the hour hand, dragging it along as the hour ring rotates. The video below shows off the secrets, and it gives you some idea of how much work went into this clock.

We’re used to seeing unique and fun timepieces and other gadgets from [Shinsaku Hiura] — this up-flipping clock comes to mind, as does this custom RPN calculator — but this project is clearly a step beyond.

Continue reading “Faceless Clock Makes You Think Twice About How It Works”

Digital Hourglass Counts Down The Seconds

If someone asked you to build a digital hourglass, what would your design look like? [BitBlt_Korry] took on that challenge, creating a functional art piece that hits it right on the nose: an hourglass with a digital display

Iron filings fall between two pieces of plexiglass while ghostly numbers appear, counting down 30 seconds. Just as quickly as they appear, the numbers disappear – dropping down to the bottom of the enclosure. Each second is punctuated by what might be the loudest clock tick we’ve ever heard.

Of course, it’s not all magic. The hourglass is controlled by a Raspberry Pi Pico running code in MicroPython. The pico drives a series of transistors, which in turn are used to control 14 solenoids.  The solenoids serve double duty — first, they move pieces of flat “fridge magnet” material close enough to attract iron filings. Their second duty is of course provide a clock tick that will definitely get your attention.

Tilt sensors are the user input to the hourglass, letting the Pi Pico know which end is up when it’s time to start a new 30-second countdown.

[BitBlt_Korry] mentions that the hardest part of the project was setting the screws at the top and bottom of the hourglass to get the perfect uniform flow of iron filings. 

[BitBlt_Korry] calls his creation “「時場(じば)」”.  Google translates this to “Jiba”, which means “magnetic field”.  We’re not native speakers, but we’re guessing there is a double meaning there.

This isn’t the first time we’ve seen humble iron filings stand up and dance at our command. If iron dust is too dry a topic, we’ve got plenty of ferrofluid projects as well!

Continue reading “Digital Hourglass Counts Down The Seconds”

A cyclotron clock display, mounted on a wooden base. There are two stepper motors exposed on either side. There is a panel installed in the wooden base with a red button on the left, two knobs and four smaller buttons in a two by two grid on the right.

A Flipping, Perpetually-Rotating Clock

Clocks are a mainstay of hackers and makers, as they provide a way to explore creative designs while still maintaining a functional aspect to the project. [Brett Oliver] follows this tradition in making a cyclotron clock that uses a perpetual rotating digit concept from a 1900s desk flip calendar.

An exploded view of one of the flip calendar digit display, showing how the tiles fit into the chamber.

Each digit of the clock has a rotating chamber that’s big enough to fit a group of tiles inside that have digits printed on either face. The tiles are sized and stacked in such a way that the rotation of the chamber allows the next tile to slide in front of the old one. Specific digits are revealed by rotating the chamber a number of times.

Each of the four digits positions has a 28BYJ-48 stepper motor to rotate the chamber, with each motor being driven by a ULN2003 driver module. The main microcontroller is a ESP32 WROOM, and an I2C compatible DS3231 real time clock (RTC) module keeps time. All of the motors are driven off of an LM2596 module that provides 7 V, while the ESP32 and RTC are powered from a USB connector.

The different modes and the ability to set time is done through a panel that has various buttons and knobs. The whole clock is mounted on a custom wooden base that has cutouts for the panels and cabling. [Brett Oliver] has done a great job of documentation, going into detail about the mechanics and electronics of the build. Design files, including STLs of the various components, are also available for download. Be sure to check out the video after the break.

We’ve featured a flip calendar with a similar operating principle before which clearly shows the inner workings of the mechanism.

Continue reading “A Flipping, Perpetually-Rotating Clock”

Building A Tessellated NeoPixel Clock

Anyone can buy a clock, but building your own lets you express your creative flair along the way. [Edison Science Corner] did just that with this neat sci-fi looking design.

The build relies on an Arduino Pro Mini to run the show, paired with a DS3231 real-time clock module. The latter part is of great importance, as without it, the Arduino would not keep accurate time. The 3D printed enclosure looks nondescript from the outside. However, inside, it’s got a neat triangular structure which allows the time to be displayed in that attractive tessellated triangular fashion. There’s a black plastic separator between all the segments which stop unattractive bleed-through and really help with the final effect. The individual triangles are each lit by a NeoPixel LED, which are both addressable and capable of lighting up in RGB colors. It makes for an attractive and colorful display.

If you want to try something more traditional yet challenging, consider whipping up your own 7-segment displays. Video after the break.

Continue reading “Building A Tessellated NeoPixel Clock”