Chaotic System Cooks Meat Evenly

For better or worse, a lot of human technology is confined to fewer dimensions than the three we can theoretically move about in. Cars and trains only travel two dimensionally with limited exceptions, maps and books generally don’t take advantage of a third dimension, and most computer displays and even the chips that make them work are largely two-dimensional in nature. Most styles of cooking can only apply heat in a single dimension as well, but [Dane Kouttron] wanted to make sure the meat his cookouts took advantage of a truly three-dimensional cooking style by adding a gyroscopic mechanism to the spit.

The first thing that needed to be built were a series of concentric rings for each of the three axes of rotation. Metal tubes were shaped with a pipe bender and then welded into their final forms, with an annealing step to flatten the loops. From there, the rings are attached to each other with a series of offset bearings. The outer tube is mounted above the fire and a single motor spins this tube. Since no piece of meat is perfectly symmetrical (and could be offset on the interior ring a bit even if it were) enough chaos is introduced to the system that the meat is free to rotate in any direction, change direction at any time, and overall get cooked in a more uniform way than a traditional single-dimensional rotating spit.

As a proof of concept [Dane] hosted a cookout and made “gyro” sandwiches (even though the machine may technically be more akin to a gimbal), complete with small Greek flag decorative garnishes. It seems to have been a tremendous success as well. There are a few other novel ways we’ve seen of cooking food over the years, including projects that cook with plasma and much more widely available methods that cook food efficiently using magnets, of a sort.

A white woman with a long ponytail in a green apron looks down at a mannequin head with pasta coming out of its chin. There is an orange pasta gun sticking out of the back of its head and a chef's hat on its head. It looks vaguely like a bust of Ramses.

Goatee Pasta Maker Makes Us Hunger For Hair

Some hacks are pure acts of whimsy, and [Simone Giertz] is back to her roots with this Goatee Pasta Maker.

If violence to mannequin heads is upsetting, the video may be a bit NSFW (to warn you now that you already clicked on it). What started out as a pasta-making version of those Play-Doh hair people quickly morphed into a more scaled-back endeavor with simply extruding pasta through the mannequin’s chin to create pasta hair.

Initial attempts at using a basketball to extrude clay (used as a pasta stand-in) through holes in a mannequin’s head were unsuccessful, so [Giertz] turned to a more conventional pasta gun to handle the pasta extrusion. Since the gun didn’t have the volume necessary to produce a full head of hair, or even a respectable mustache, the next mannequin’s chin was subjected to multiple drill holes for pasta to escape in a hairy tangle.

The results aren’t exactly appetizing, but it definitely does make edible pasta. If you’re looking for more pasta hacks, how about ramen in an edible package, flat pack pasta, or Barilla’s Open Source pasta tool?

Continue reading “Goatee Pasta Maker Makes Us Hunger For Hair”

Building A Semi-Auto Cookie Dough Gun

Are you a chocolate chip cookie connoisseur? Do you want to eat more cookies than you probably should at the push of a button? Don’t worry, [Startup Chuck] has got you covered with his semi-automatic cookie dough dispenser.

[Startup Chuck] tries several ways of dispensing dough, some of which more explosive than others. Turns out that a homemade pneumatic extruder doesn’t exactly rhyme with “safety”. The other methods are more promising dough though, and an empty caulk tube sourced from Amazon and a motorized caulking gun demonstrate a less dangerous, more effective way to dispense dough.

Inspired by this approach, he started development of a servo-driven extruder. It uses store-bought dough cylinders in a sleek metal and acrylic contraption that is then treated with the requisite big mess of wires any good project has. As the dough is extruded, an optical sensor detects how far the dough has moved and it uses sufficiently violent pneumatics to slice the dough, which has the fun side effect of launching pucks of cookie dough at the user.

If you like the idea of edible extrusions, but aren’t so concerned about the rapid-fire element of this project, the concept isn’t unlike some of the food printers we’ve covered.

Continue reading “Building A Semi-Auto Cookie Dough Gun”

a microwave-oven with animated wave diagram

Dive Into The Microwaves, The Water’s Dipolar

When the microwave oven started to gain popularity in the 60s and 70s, supporters and critics alike predicted that it would usher in the end of cooking as we knew it. Obviously that never quite happened, but not because the technology didn’t work as intended. Even today, this versatile kitchen appliance seems to employ some magic to caffeinate or feed a growing hacker in no time flat. So, how exactly does this modern marvel work?

interior of a microwave-oven with a wave length overlay

That’s exactly what [Electronoob] set out to explain in his latest video. After previously taking apart a microwave and showing off the magnetron within he’s back with a clear explanation of how these devices work.

Maybe you have no idea, or have heard something vague about the water in the food wiggling in response to the microwaves. Do you know why microwaves and not some other part of the electromagnetic spectrum? Why the food spins on a platter? How the size of the oven relative to the wavelength affects the efficiency of its cooking? We didn’t, and think the video is a great primer on all of this and more.

Here at Hackaday, we sure love using and abusing microwave ovens. From upgrading them with voice control back in 2013, to turning them into UV curing chambers and mini foundries, to the limitless possibilities for the transformers and magnetrons that await us inside, we just can’t get enough. (this is our 82nd article tagged with microwave!)

Continue reading “Dive Into The Microwaves, The Water’s Dipolar”

Throwback: USB Hotplate Used 30 Whole Ports

Once upon a time, USB was still hip, cool, and easy to understand. You could get up to 500 mA out of a port, which wasn’t much, but some companies produced USB cup warmers anyway which were a bit of a joke. However, one enterprising hacker took things further back in 2004, whipping up a potent USB hot plate powered by a cavalcade of ports.

Delicious.

The project was spawned after a USB cup warmer sadly failed to cook a decent fried egg. To rectify this, a souped-up version was built. The cup warmer was stripped of its original hardware, and fitted with six 2-ohm resistors instead. At 5 volts, each would draw 2.5 amps and the total power draw would be on the order of 75 watts. Each resistor would thus need five USB ports to power it to stay under the 500 mA limit, for a total of 30 USB ports in total. Six PCI-to-USB cards were installed in a motherboard for this purpose, providing the requisite ports.  A 500 watt power supply meant the computer had plenty of juice to run the hot plate.

Cooking proved successful, generating a decent amount of heat to brown up some beef. Served with some white rice, it proved an adequate meal, though apparently with a noted taste of electronic components.

This wouldn’t be such a challenge today. USB-C is capable of delivering 100 watts through a single port at 20 volts and 5 amps. However, there’s something joyous and charming about cooking on a ridiculous hotplate running off 30 USB 1.1 ports. The ingenuity is to be applauded, and it is truly a project of its time.

Digital Kitchen Spoon Makes Weighing Your Ingredients A Snap

There seem to be two camps when it comes to recipes: those based on volume-based measurements, and those based on the weight of ingredients. Gravimetric measurements have the advantage of better accuracy, but at the price of not being able to quickly scoop out a bit of this and a dash of that. It would be nice to get the convenience of volumetric measurements with the accuracy of weighing your ingredients, wouldn’t it?

It would, and that’s just what [Penguin DIY] did with this digital kitchen spoon scale. The build started with, perhaps not surprisingly, a large mixing spoon and a very small kitchen scale. The bowl of the spoon got lopped off the handle and attached to the strain gauge, which was removed from the scale along with its LCD display and circuit board. To hold everything, a somewhat stocky handle was fabricated from epoxy resin sandwiched between aluminum bolsters. Compartments for the original electronics parts, as well as a LiPo battery and USB charger module, were carved out of the resin block, and the electronics were mounted so that the display and controls are easily accessible. The video below shows the build as well as the spoon-scale in action in the kitchen.

We think this is not only a great idea but a fantastic execution. The black epoxy and aluminum look amazing together on the handle, almost like a commercial product. And sure, it would have been easy enough to build a scale from scratch — heck, you might even be able to do away with the strain gauge — but tearing apart an existing scale seems like the right move here.

Continue reading “Digital Kitchen Spoon Makes Weighing Your Ingredients A Snap”

Barilla’s Open Source Tool For Perfect Pasta

Cooking pasta is perhaps one of the easiest things you can do in the kitchen, second only to watching a pot of water boil. But as pasta maker Barilla points out on their website, you can reduce your meal’s CO₂ emissions by up to 80% if you simply let the pasta sit in the hot water rather than actively boil it the whole time — a technique known as passive cooking.

The trick is getting the timing right, so in a fairly surprising move, Barilla has released the design for an open source device that will help you master this energy-saving technique. Granted it’s not a terribly complex piece of hardware, consisting of little more than an Arduino Nano 33 BLE, an NTC probe, and a handful of passive components wrapped up in a 3D-printed case. But the documentation is great, and we’ve got to give Barilla credit for going way outside of their comfort zone with this one.

Magnets in the 3D printed case let it stick to the lid of your pot, and when it detects the water is boiling, the gadget alerts your phone (at least for this version of the device, an Android or iOS application is required) that it’s time to put in the pasta. A few minutes later it will tell you when you can turn off the burner, after which it’s just a matter of waiting for the notification that your passively-cooked pasta is ready to get pulled out.

Like the prop making video Sony put out after the release of Ghostbusters: Afterlife, we recognize that on some level this is an advertisement for Barilla pasta. But if developing useful open source gadgets that can be built by the public is what a company wants to spend their advertising dollars on, you won’t catch us complaining. Hell, we might even spring for a box of Barilla next time we’re in the store.

Continue reading “Barilla’s Open Source Tool For Perfect Pasta”