ASync-Firefly

[dev_dsp] wanted to try his hand at creating a purely analog implementation of multiple synchronizing fireflies powered by a single battery and built from off-the shelf, through-hole components on inexpensive protoboard. In theory, even your local Radio Shack should still carry all of this stuff. He was obviously inspired by [alex]’s fireflies that we’ve covered in the past, but he wanted to see how far it could be taken without the use of a microprocessor.

In the end, [dev_dsp] relied on one crucial piece of digital ware, the ever-popular 555 timer IC, but he’s using analog discrete components to do the grunt work of adjusting the phase of each firefly by feeding a little extra current to the trigger capacitor whenever the flash of a nearby firefly is detected. After the jump, you’ll find schematics and a video demo of three ASync-Firefly modules in various stages of assembly playing with one another while [dev_dsp] discusses their operation.

Gaming’s Newest Accessory: Headbands

These aren’t terrorists, they’re electrical engineering students. For their final project they developed a headband and rifle input system for the NES. The controllers send data to a laptop which then maps out the inputs to NES controller commands and sends them to an original NES console, no emulation here.

The controllers in the headband and rifle are Firefly sensor network nodes. Originally, [Kevin] and [Evan] tried using accelerometers for motion information but found the data do be unreliable. After an upgrade to gyroscope modules the interface is much more responsive, as seen about 3:50 into the video after the break. We like seeing motion controller hacks and we appreciate the choice of a classic system (and lesser known game title). This really makes it a whole different game.

Continue reading “Gaming’s Newest Accessory: Headbands”

64 Synchronizing Fireflies

screenshot_007

[Alex] of tinkerlog created a set of 64 RGB fireflies that synchronize to blink all at once. We covered the kit earlier, but he has assembled a set of 64. Each firefly is independently controlled by an ATtiny13 that reads a phototransistor and lights up an RGB LED. The fireflies are programmed to blink a certain rate, but blink faster if they detect other blinks. After a few cycles, the fireflies begin to blink in unison. When the fireflies are arranged in different configurations, different patterns emerge. He is selling kits and has instructions for building your own. Videos of the fireflies after the jump.

Continue reading “64 Synchronizing Fireflies”

Intro To Charlieplexing

charlie

[sixerdoodle] sent us this nice firefly project that serves as an intro to charlieplexing. We’ve mentioned charlieplexing before, in our LED Life post and the Breath Controlled LED candles post. This project is quite simple and focues mainly on how to make a charlieplexed circuit work.

The goal was to create a tiny firefly bottle with SMD LEDs and as few wires as possible. In the video, after the break, it is hard to tell just how small this thing is until we see the battery. There are clear directions and fantastic pictures detailing exactly how to set up a charlieplexed circuit with 6 LEDs.

Continue reading “Intro To Charlieplexing”

Jar Of Fireflies

[Randomskk] has been attempting to make electronic fireflies for quite some time and finally settled on a design he liked. His jar of fireflies uses an ATtiny13 to control a set of 12 matrixed LEDs. The green SMD LEDs are each soldered to a pair of thin wires that hang down into the jar. The software picks an LED at random to flash and then flashes it 1-3 times. The random seed is incremented each time the jar is turned on, so you’ll get 255 different patterns. The power is just a standard coin cell. The project is fairly simple electrically, but the LED soldering could prove difficult. It was inspired by this firefly jar project. Check out [Alex]’s synchronizing fireflies too. A video of the jar is available below. Continue reading “Jar Of Fireflies”

LED Random Blinking Mood Lighting

What is it about pseudo random flashing LEDs that make us go gaga?  We don’t know, but there’s definitely something there. [seligtobiason] has this obsession too.  After seeing several more complicated projects, he created this elegant, simple, and cheap piece of art. The entire thing is pretty much just some flashing LEDs, some resistors, and a power supply.  It really isn’t anything groundbreaking, but the effort and cost involved are tiny compared to some other similar projects.  sure, it doesn’t synchronize over time based on input like the firefly project.   But for a quick cheap project, the results are quite nice.

We would put one in our home, right next to the node blinky.

Synchronizing Fireflies NG


[Alex] from Tinkerlog has revisited an old project with Synchronizing Fireflies NG. Fascinated by how fireflies blink at same rate and synchronize with each other, he built a digital version. Each board has an RGB LED and a phototransistor or photoresistor. A ping-pong ball is used as a diffuser. The blink rate is controlled by an ATtiny13v. The board power can be daisy chained, but each firefly mote operates independently of the others. The microcontroller has a fixed flash rate and monitors for other flashes. It attempts to sync by flashing earlier. The color of the LED expresses how satisfied the firefly is with its current sync. You can see a video of eight fireflies attempting to self organize embedded below.

Continue reading “Synchronizing Fireflies NG”