Custom VR Headset Uses Unconventional Displays

Cathode ray tubes (CRTs) are a fascinating display technology that has been largely abandoned outside of retro gaming and a few other niche uses. They use magnets to steer a beam of electrons rapidly across a screen, and while a marvel of engineering for their time, their expense, complexity, and weight all led to them being largely replaced by other displays like LCDs and LEDs. They were also difficult to miniaturize, but there were a few companies who tried. [dooglehead] located a few of the smallest CRT displays he could find and got to work putting them in the most unlikely of situations: a virtual reality headset.

The two displays for his headset come from Sony Watchmans, compact over-the-air black-and-white handheld televisions from the late 1900s. [dooglehead] had to create a method for sending video to these units which originally had no input connections, and then also used an FPGA to split a video signal into two parts, with one for each display. The two displays are placed side by side and attached to a Google Cardboard headset, with an off-the-shelf location tracker attached at the top. An IMU tracks head rotation while this location tracker tracks the motion of the unit through 3D space.

With everything assembled and ready to go, the CRT VR headset only weighs in a few grams heavier than [dooglehead]’s modern HTC headset, although it’s lacking a case (which is sorely needed to cover up the exposed high voltage of the CRTs). He reports surprisingly good performance, with notable interlacing and focus issues. He doesn’t plan to use it to replace any of his modern VR displays anytime soon, but it was an interesting project nonetheless. There are some rumors that CRTs are experiencing a bit of a revival, so we’d advise anyone looking to toss out an old CRT to at least put it on an online market place before sending it to a landfill.

Continue reading “Custom VR Headset Uses Unconventional Displays”

A DIY Headset For SteamVR

The modern era of VR started a long time ago, and a wide range of commercial headsets have proliferated on the market since then. If you don’t want to buy off the shelf, though, you could always follow [Manolo]’s example and build your own.

This DIY headset is known as the Persephone 3 Lite, and is intended for use with SteamVR.  It’s got the requisite motion tracking thanks to a Raspberry Pi Pico, paired with an MPU6500 inertial measurement unit. As for the optics, the headset relies on a pair of 2.9-inch square displays that operate at a resolution of 1440 x 1440 with a refresh rate up to 90 Hz. They’re paired with cheap Fresnel lenses sourced from Aliexpress for a few dollars. Everything is wrapped up in a custom 3D-printed housing that holds all the relevant pieces in the right place so that your eyes can focus on both screens at once. The head strap is perhaps the only off-the-shelf piece, sourced from a Quest 2 device.

If you’re eager to recreate this build at home, files are available over on [Manolo’s] Patreon page for subscribers. We’ve featured some other DIY headset builds before, too. Video after the break.

Continue reading “A DIY Headset For SteamVR”

Open Source Hack Lets The Razer Nari Headset Work With Linux

The Razer Nari is a decent wireless headset, but it’s a little oddball—because it uses a bespoke USB dongle for pairing. This is all well and good if you’re using a supported configuration; plug it into a Windows PC, run the utility, and you’re good to go. If you’re a Linux user, though, you were out of luck—but [JJ] has just solved that problem.

The tool was created by reverse engineering the pairing protocol used by Razer’s own proprietary software. [JJ] figured out the necessary pairing command, and how to send it to both the dongle and the headset. The headset itself must be connected by a USB cable when initiating the pairing process.

[JJ] believes the tool should work with any Razer Nari and dongle variant. However, the Nari Ultimate and Nari Essential models are yet to be tested, with verification still required. However, the pairing commands were extracted from Razer’s own tool and don’t appear to differ so it should probably work across the boardSetup is still a little fussy, particularly to get both the Game Audio and Chat Audio outputs working under Linux. However, [JJ] has helpfully provided the necessary detail to get everything up and running with PulseAudio and PipeWire setups.

Proprietary hardware can be frustrating to work with at times, but that’s never stopped hackers from reverse engineering their way to success before. If you’ve got your own projects in this vein, don’t hesitate to notify the tipsline!

3D Printing A Cheap VR Headset

The modern era of virtual reality really kicked off in earnest just over a decade ago, when the Oculus Rift promised 3D worlds beyond your wildest dreams. Since then, nobody’s been able to come up with a killer app to convince even a mild fraction of consumers to engage with the technology. Still, if you’re keen to tinker, you might like to make your own headset like [CNCDan] has done.

The build is based almost entirely on 3D-printed components and parts sourced from AliExpress. It offers 2880x1440p resolution, thanks to a pair of square 1440×1440 LCD displays, one for each eye, paired with a couple of 34 mm lenses. The headset has adjustable interpupiliary distance so you can dial the view in to properly suit your eyes. The 3D-printed housing is designed to be compatible with headrest pads from the HTC Vive Pro for comfort’s sake. Head tracking is also available, with the inclusion of an IMU and an Arduino onboard. [CNCDan] apparently put the build together for under $150, which is not bad compared to the price of a commercial off-the-shelf unit. Files are on Github for the curious.

[CNCDan] reports good results with the DIY headset, using it primarily with his racing simulator setup. He has had some issues, however, with his LCD screens, which don’t properly run at a 90 Hz refresh rate at full resolution, which is frustrating. It’s an issue he’s still looking into. We’ve seen some other neat VR builds over the years, too. Video after the break.

Continue reading “3D Printing A Cheap VR Headset”

VR Headset With Custom Face Fitting Gets Even More Custom

The Bigscreen Beyond is a small and lightweight VR headset that in part achieves its small size and weight by requiring custom fitting based on a facial scan. [Val’s Virtuals] managed to improve fitment even more by redesigning a facial interface and using a 3D scan of one’s own head to fine-tune the result even further. The new designs distribute weight more evenly while also providing an optional flip-up connection.

It may be true that only a minority of people own a Bigscreen Beyond headset, and even fewer of them are willing to DIY their own custom facial interface. But [Val]’s workflow and directions for using Blender to combine a 3D scan of one’s face with his redesigned parts to create a custom-fitted, foam-lined facial interface is good reading, and worth keeping in mind for anyone who designs wearables that could benefit from custom fitting. It’s all spelled out in the project’s documentation — look for the .txt file among the 3D models.

We’ve seen a variety of DIY approaches to VR hardware, from nearly scratch-built headsets to lens experiments, and one thing that’s clear is that better comfort is always an improvement. With newer iPhones able to do 3D scanning and 1:1 scale scanning in general becoming more accessible, we have a feeling we’re going to see more of this DIY approach to ultra-customization.

Hackaday Links Column Banner

Hackaday Links: February 18, 2024

So it turns out that walking around with $4,000 worth of hardware on your head isn’t quite the peak technology experience that some people thought it would be. We’re talking about the recently released Apple Vision Pro headset, which early adopters are lining up in droves to return. Complaints run the gamut from totally foreseeable episodes of motion sickness to neck pain from supporting the heavy headset. Any eyeglass wearer can certainly attest to even lightweight frames and lenses becoming a burden by the end of the day. We can’t imagine what it would be like to wear a headset like that all day. Ergonomic woes aside, some people are feeling buyer’s remorse thanks to a lack of apps that do anything to justify the hefty price tag. The evidence for a wave of returns is mostly gleaned from social media posts, so it has to be taken with a grain of salt. We wouldn’t expect Apple to be too forthcoming with official return figures, though, so the ultimate proof of uptake will probably be how often you spot one in the wild. Apart from a few cities and only for the next few weeks, we suspect sightings will be few and far between.

Continue reading “Hackaday Links: February 18, 2024”

Why VR As Monitor Replacement Is Likely To Be Terrible For A While Yet

Putting on a headset and using virtual monitors in VR instead of physical ones is a use case that pops up, but is it really something feasible? [Karl Guttag], who has long experience and a deep understanding of the technical challenges that face such devices, doesn’t seem to think so.

In his writeup [Karl] often focuses on the recently-unveiled high resolution Apple Vision Pro, but the issues he discusses transcend any particular product. His article is worth the read for anyone with an interest in these issues, but we’ll summarize some main points here. Continue reading “Why VR As Monitor Replacement Is Likely To Be Terrible For A While Yet”