Ask Hackaday: Where Are All The Fuel Cells?

Given all the incredible technology developed or improved during the Apollo program, it’s impossible to pick out just one piece of hardware that made humanity’s first crewed landing on another celestial body possible. But if you had to make a list of the top ten most important pieces of gear stacked on top of the Saturn V back in 1969, the fuel cell would have to place pretty high up there.

Apollo fuel cell. Credit: James Humphreys

Smaller and lighter than batteries of the era, each of the three alkaline fuel cells (AFCs) used in the Apollo Service Module could produce up to 2,300 watts of power when fed liquid hydrogen and liquid oxygen, the latter of which the spacecraft needed to bring along anyway for its life support system. The best part was, as a byproduct of the reaction, the fuel cells produced drinkable water.

The AFC was about as perfectly suited to human spaceflight as you could get, so when NASA was designing the Space Shuttle a few years later, it’s no surprise that they decided to make them the vehicle’s primary electrical power source. While each Orbiter did have backup batteries for emergency purposes, the fuel cells were responsible for powering the vehicle from a few minutes before launch all the way to landing. There was no Plan B. If an issue came up with the fuel cells, the mission would be cut short and the crew would head back home — an event that actually did happen a few times during the Shuttle’s 30 year career.

This might seem like an incredible amount of faith for NASA to put into such a new technology, but in reality, fuel cells weren’t really all that new even then. The space agency first tested their suitability for crewed spacecraft during the later Gemini missions in 1965, and Francis Thomas Bacon developed the core technology all the way back in 1932.

So one has to ask…if fuel cell technology is nearly 100 years old, and was reliable and capable enough to send astronauts to the Moon back in 1960s, why don’t we see them used more today?

Continue reading “Ask Hackaday: Where Are All The Fuel Cells?”

Mr Fusion powering a vehicle

Could Nuclear Be The Way To Produce Synthetic Fuel On The Cheap?

Fossil fuels can be a bit fussy to access, and geopolitics tends to make prices volatile. Burning them also takes carbon out of the ground and puts it into the atmosphere, with undesirable climate implications. The hunt for a solution has been on for quite some time.

Various synthetic fuels have been proposed as a solution, wherein carbon dioxide is captured from the air and chemically processed into useful fuel. Done properly, this could solve the climate issue where any fuel burned has its carbon later captured to make more fuel. The problem, though, is that this process is very energy intensive. Given the demands, it’s no surprise that some are looking towards nuclear reactors for the answer.

Continue reading “Could Nuclear Be The Way To Produce Synthetic Fuel On The Cheap?”

Simple Hydrogen Generator Makes Bubbles And Looks Cool

Hydrogen! It’s a highly flammable gas that seems way too cool to be easy to come by. And yet, it’s actually trivial to make it out of water if you know how. [Maciej Nowak] has shown us how to do just that with his latest build.

The project in question is a simple hydrogen generator that relies on the electrolysis of water. Long story short, run a current through water and you can split H2O molecules up and make H2 and O2 molecules instead. From water, you get both hydrogen to burn and the oxygen to burn it in! Even better, when you do burn the hydrogen, it combines with the oxygen to make water again! It’s all too perfect.

This particular generator uses a series of acrylic tanks. Each is fitted with electrodes assembled from threaded rods to pass current through water. The tops of the tanks have barbed fittings which allow the gas produced to be plumbed off to another storage vessel for later use. The video shows us the construction of the generator, but we also get to see it in action—both in terms of generating gas from the water, and that gas later being used in some fun combustion experiments.

Pedants will point out this isn’t really just a hydrogen generator, because it’s generating oxygen too. Either way, it’s still cool. We’ve featured a few similar builds before as well.

(Pedantic editor’s note: Because this build doesn’t separate the H2 from the O2, what you get is a stoichiometric mix, or HHO, or “Oxyhydrogen“. By virtue of being in exactly the right ratio to combust, this stuff is significantly more explosive than pure H2. Be careful!)

Continue reading “Simple Hydrogen Generator Makes Bubbles And Looks Cool”

Swiss Researchers May Have Solved Hydrogen Storage

If you follow the world of clean energy, you will probably have read all about the so-called hydrogen future and the hydrogen economy. The gas can easily be made from water by electrolysis from green solar electricity, contains a lot of stored energy which is clean to recover, and seems like the solution to many of our green energy woes. Sadly the reality doesn’t quite match up as hydrogen is difficult to store and transport, so thus far our hydrogen cars haven’t quite arrived. That hasn’t stopped researchers looking at hydrogen solutions though, and a team from ETH Zurich might just have found a solution to storing hydrogen. They’re using it to reduce iron oxide to iron, which can easily release the hydrogen by oxidation with water.

Their reactor is simplicity itself, a large stainless steel tank filled with powdered iron ore. Pump hydrogen into it and the iron oxide in the ore becomes water and iron which forms the storage medium, and retrieve the hydrogen later by piping steam through the mixture. Hydrogen generated in the summer using solar power can then be released in the winter months. Of course it’s not perfectly efficient, and a significant quantity of energy is lost in heat, but if the heat is recovered and used elsewhere that effect can be mitigated. The hope is that their university might be benefiting from a pilot plant in the coming years, and then perhaps elsewhere those hydrogen grids and cars might become a reality. We can hope.

Meanwhile, in the past we’ve looked at a not quite so green plan for a hydrogen grid.

Pulling Hydrogen Out Of The Water

In theory, water and electric current will cause electrolysis and produce oxygen and hydrogen as the water breaks apart. In practice, doing it well can be tricky. [Relic] shows an efficient way to produce an electrolysis cell using a few plastic peanut butter jars and some hardware.

The only tricky point is that you need hardware made of steel and not zinc or other materials. Well, that and the fact that the gasses you produce are relatively dangerous.

Continue reading “Pulling Hydrogen Out Of The Water”

Hydrogen Generation With Seawater, Aluminum, And… Coffee?

A team at MIT led by [Professor Douglas Hart] has discovered a new, potentially revelatory method for the generation of hydrogen. Using seawater, pure aluminum, and components from coffee grounds, the team was able to generate hydrogen at a not insignificant rate, getting the vast majority of the theoretical yield of hydrogen from the seawater/aluminum mixture. Though the process does use indium and gallium, rare and expensive materials, the process is so far able to recover 90% of the indium-gallium used which can then be recycled into the next batch. Aluminum holds twice as much energy as diesel, and 40x that of Li-Ion batteries. So finding a way to harness that energy could have a huge impact on the amount of fossil fuels burned by humans!

Pure, unoxidized aluminum reacts directly with water to create hydrogen, as well as aluminum oxyhydroxide and aluminum hydroxide. However, any aluminum that has had contact with atmospheric air immediately gets a coating of hard, unreactive aluminum oxide, which does not react in the same way. Another issue is that seawater significantly slows the reaction with pure aluminum. The researchers found that the indium-gallium mix was able to not only allow the reaction to proceed by creating an interface for the water and pure aluminum to react but also coating the aluminum pellets to prevent further oxidization. This worked well, but the resulting reaction was very slow.

Apparently “on a lark” they added coffee grounds. Caffeine had already been known to act as a chelating agent for both aluminum and gallium, and the addition of coffee grounds increased the reaction rate by a huge margin, to the point where it matched the reaction rate of pure aluminum in deionized, pure water. Even with wildly varying concentrations of caffeine, the reaction rate stayed high, and the researchers wanted to find out specifically which part of the caffeine molecule was responsible. It turned out to be imidazole, which is a readily available organic compound. The issue was balancing the amount of caffeine or imidazole added versus the gallium-indium recovery rate — too much caffeine or imidazole would drastically reduce the recoverable amount of gallium-indium.

Continue reading “Hydrogen Generation With Seawater, Aluminum, And… Coffee?”

POP! Goes The Hydrogen Howitzer

Military models are great 3D printing projects, even more so if they are somewhat functional. [Flasutie] took it a step further by engineering a 3D-printed howitzer that doesn’t just sit pretty—it launches shells with a hydrogen-powered bang.

This project’s secret sauce? Oxyhydrogen, aka HHO, the mix of hydrogen born when water endures the electric breakup of electrolysis. [Flasutie] wanted functional “high explosive” (HE) projectiles to pop without turning playtime into emergency room visit, and 30 mm was the magic size, allowing the thin-walled PLA projectile to rupture without causing injury, even when held in the hand. To set off the gaseous fireworks, [Flasutie] designed an impact fuze featuring piezoelectric spark mechanism nestled within a soft TPU tip for good impact sensitivity.

The howitzer itself is like something out of a miniaturized military fantasy—nearly entirely 3D printed. It boasts an interrupted thread breech-locking mechanism and recoil-absorbing mechanism inspired by the real thing. The breechblock isn’t just for show; it snaps open under spring power and ejects spent cartridges like hot brass.

Watch the video after the break for the build, satisfying loading sequence and of course cardboard-defeating “armor piercing” (AP) and HE shells knocking out targets.